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Abstract
Entity set expansion, taxonomy expansion, and
seed-guided taxonomy construction are three
representative tasks for automatically enrich-
ing an existing taxonomy with emerging con-
cepts. Previous studies have treated them as
separate tasks, leading to techniques that are
specialized for one task but lack generaliz-
ability and a holistic perspective. In this pa-
per, we propose a unified solution to address
all three tasks. Specifically, we identify two
fundamental skills facilitating the three tasks:
finding “siblings” and finding “parents”. To
this end, we introduce a taxonomy-guided in-
struction tuning framework that trains a large
language model to generate siblings and par-
ents for query entities, where the joint pre-
training process enables mutual reinforcement
of these two skills. Extensive experiments on
multiple benchmark datasets validate the ef-
fectiveness of our proposed TAXOINSTRUCT
framework, demonstrating its superiority over
task-specific baselines across all three tasks.
Our codes and data are available at https:
//github.com/yanzhen4/TaxoInstruct.

1 Introduction

Entities are fundamental to natural language
processing. To better capture their semantics,
taxonomies are constructed across various do-
mains, including science (Shen et al., 2018b),
e-commerce (Mao et al., 2020), and social me-
dia (Gonçalves et al., 2019), to characterize the
parent-child relationship between entities. While
taxonomies are often initially curated by domain
experts, the continuous emergence of new concepts
necessitates automatic expansion to maintain their
freshness and completeness. To this end, previous
studies have explored three key tasks for integrating
new entities into existing knowledge.
(1) Entity Set Expansion (Wang and Cohen, 2007;
Rong et al., 2016; Shen et al., 2017): Given a
set of entities belonging to a specific semantic
class, the goal is to identify more entities within
the same class. For example, given the seed enti-
ties {Database, Information Retrieval, Operating

System}, an entity set expansion algorithm should
retrieve other computer science subfields such as
Data Mining and Human-Computer Interaction.
From a taxonomy perspective, this task can be
viewed as finding “siblings” of existing entities.

(2) Taxonomy Expansion (Shen et al., 2020b; Yu
et al., 2020; Zeng et al., 2021): The goal of this
task is to insert a provided new entity into an ex-
isting taxonomy by identifying its most appropri-
ate “parents”. For instance, consider a taxonomy
with the root node Scientific Fields and its chil-
dren Computer Science, Mathematics, Physics, and
Chemistry. Given a new concept Data Mining, a
taxonomy expansion model should place it as a
child of Computer Science.

(3) Seed-Guided Taxonomy Construction (Shen
et al., 2018a): Given a seed taxonomy with a small
number of entities, the goal is to construct a more
comprehensive taxonomy that expands upon the ini-
tial structure. For example, if the input consists of
Computer Science, Chemistry, and several of their
subfields (e.g., Data Mining and Organic Chem-
istry), the expected output should include more sci-
entific fields (e.g., Mathematics and Physics) and
their subfields (e.g., Database, Algebra, and Astro-
physics), with explicitly identified parent-child re-
lationships. To approach this problem, we can first
discover new entities at each layer and then figure
out the parent-child edges between adjacent layers.
Essentially, this can be framed as pipelining the
steps of finding “siblings” and finding “parents”.

As evident from the discussion above, all three
tasks can be cast as finding entities that share a
specific type of relationship with the given entities:
entity set expansion involves finding “siblings”;
taxonomy expansion relies on finding “parents”;
seed-guided taxonomy construction integrates both.
However, existing studies typically address only
one of the three tasks, proposing task-specific tech-
niques with little attention to their underlying com-
monalities. Intuitively, the processes of finding
“siblings” and “parents” can reinforce each other.
For example, recognizing that Data Mining is a
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Figure 1: Illustrations of the three tasks.

sibling of Database and Information Retrieval can
help predict its parent as Computer Science, and
vice versa. By improving the accuracy of both sib-
ling and parent prediction, we can leverage them
as fundamental building blocks to solve all three
tasks in a more holistic and unified manner.

Contributions. Building on the insights above,
this paper proposes a unified framework to simul-
taneously address entity set expansion, taxonomy
expansion, and seed-guided taxonomy construc-
tion. Specifically, we leverage existing taxonomies
as rich sources of sibling-sibling and parent-child
relationships to pre-train a model for identifying
both siblings and parents. This pre-trained model
can then be fine-tuned on domain-specific data
(e.g., parent-child pairs from the input taxonomy
in the taxonomy expansion task) to perform down-
stream tasks effectively. To implement this frame-
work, we harness the instruction-following capabil-
ities of large language models (LLMs) (Wei et al.,
2022a; Ouyang et al., 2022). Our proposed TAX-
OINSTRUCT framework employs task-specific in-
structions to train an LLM to generate sibling en-
tities and identify parent entities for one or more
query entities. The joint pre-training process en-
ables mutual enhancement between these two skills
and benefits overall performance of all three tasks.

To evaluate TAXOINSTRUCT, we conduct exten-
sive experiments on 6 benchmark datasets span-
ning entity set expansion, taxonomy expansion,
and seed-guided taxonomy construction. The re-
sults demonstrate that TAXOINSTRUCT, as a uni-
fied framework, significantly outperforms strong
task-specific baselines across all three tasks. Addi-
tionally, we examine the impact of different LLM
backbones (Touvron et al., 2023; Jiang et al., 2023a;
Team et al., 2024) within TAXOINSTRUCT, show-
ing that its effectiveness is robust and does not
depend on a specific LLM choice.

2 Task Definition

In this section, we formally introduce the three
representative tasks for populating a taxonomy with
new entities.
Entity Set Expansion. As shown in Figure 1(a),
the entity set expansion task seeks to identify a
set of "sibling" entities that belong to the same
semantic class as a few example entities (referred
to as "seeds"). Formally,

Definition 1. (Entity Set Expansion) Given a small
set of seed entities S = {s1, s2, ..., sM}, the task
is to discover more entities S+ = {sM+1, sM+2,
..., sM+N}, where s1, s2, ..., sM+N fall into the
same semantic category.

Taxonomy Expansion. As shown in Figure 1(b),
taxonomy expansion involves inserting a set of new
entities into an existing taxonomy by identifying
an appropriate “parent” node in the taxonomy for
each new entity. Formally,

Definition 2. (Taxonomy Expansion) Given an ex-
isting taxonomy T (which contains a set of entities
S and the parent-child relationship between the
entities PARENT(·) : S → S ∪ {sROOT}) and
a set of new entities S+, the task is to expand
the taxonomy to a more complete one T + with
entities S ∪ S+ and the parent-child relationship
PARENT+(·) : S ∪ S+ → S ∪ {sROOT}.

Seed-Guided Taxonomy Construction. As shown
in Figure 1(c), seed-guided taxonomy construction
involves two steps: first, identifying a set of new
entities to be added to the taxonomy, and then deter-
mining the appropriate parent for each new entity.

Definition 3. (Seed-Guided Taxonomy Construc-
tion) Given a small set of seeds that form a
tree structure T = (S0,S1, ...,SL), where S0 is
{sROOT}, Sl (1 ≤ l ≤ L) denotes the set of
seeds at layer l, and the parent-child relationship is
characterized by a mapping function PARENT(·) :



Instruction: Given a list of entities, output the most likely parent class for the entity given by user.
Input: Find the parent class for {Heart Enlargement, Heart Rupture, Heart Defect}.

Instruction: Given a category and an entity set belonging to this category, output other entities 
belonging to this category and sharing the same granularity as the seeds.
Input: Find other entities belonging to the category Heart Disease and sharing the same 
granularity as the seeds {Heart Enlargement, Heart Rupture, Heart Defect}.

Entity Set Expansion

Instruction: Given a set of candidate parent classes and an entity, output the most likely parent 
class for the entity given by user.
Input: Given candidate parents {Heart Disease, Vascular Disease, Heart Enlargement, High Blood 
Pressure, Stroke}, find the parent class for Ischemic Stroke.

Taxonomy Expansion

Instruction: Given a category and an entity set belonging to this category, output other entities 
belonging to this category and sharing the same granularity as the seeds.
Input: Find other entities belonging to the category Disease and sharing the same granularity as …

Seed-Guided Taxonomy Construction

Instruction: Given a set of candidate parent classes and an entity, output the most likely parent 
class for the entity given by user.
Input: Given candidate parents {Heart Disease, Vascular Disease, Lung Disease, Cerebral Disease}, 
find the parent class for Lung Cancer.

TaxoInstruct

Response: The parent class is Heart Disease.

Response: The expanded entities are {Heart 
Block, Heart Failure, Arrhythmia, …}.

Response: The parent class is Stroke.

Response: The expanded entities are {Vessel 
Obliteration, Lung Cancer, Brain Tumor, …}.

Response: The parent class is Lung Disease.

Figure 2: Illustration of the TAXOINSTRUCT framework.

Sl → Sl−1, the task aims to discover more entities
at each level (denoted by the sets S+

1 , ...,S+
L , where

entities in Sl and S+
l belong to the same seman-

tic class) and predict their parent-child relation-
ship (characterized by PARENT+(·) : Sl ∪ S+

l →
Sl−1 ∪ S+

l−1).

3 Model

Inspired by the intuition that entity set expan-
sion, taxonomy expansion, and seed-guided tax-
onomy construction all rely on two fundamen-
tal skills—finding “siblings” and finding “par-
ents”—we aim to train a unified model that simul-
taneously learns both skills, thereby facilitating all
three tasks. To implement this idea, in this section,
we propose TAXOINSTRUCT, a unified taxonomy-
guided instruction tuning framework.

3.1 Entity Set Expansion

Given a set of seeds S = {s1, s2, ..., sM}, the en-
tity set expansion task imposes two constraints
on the expanded entities S+ = {sM+1, sM+2,
..., sM+N}. First, sM+n (1 ≤ n ≤ N) must be-
long to the same semantic category as s1, s2, ...,
sM . For example, in Figure 1(a), both Heart En-
largement and Arrhythmia belong to the category
Heart Disease. Second, sM+n must share the same
level of granularity as s1, s2, ..., sM . For exam-
ple, while Congenital Heart Defect also belongs to
Heart Disease, it should not be expanded in Figure
1(a) because it is more fine-grained than the seed
Heart Defect. These two restrictions inherently
describe the concept of “siblings” in a taxonomy,
as siblings share the same parent and reside at the
same hierarchical level.

Inspired by this, we frame the entity set expan-
sion task (from a taxonomy perspective) as identi-
fying other siblings of the seed entities. We tackle
this problem by leveraging the ability of LLMs to
follow task-specific instructions (Wei et al., 2022a;
Ouyang et al., 2022). Briefly, given a set of INPUT

entities S = {s1, s2, ..., sM} that share the same
parent node PARENT(S), we INSTRUCT an LLM
(e.g., Llama-3 8B (Dubey et al., 2024)) to generate
more children of PARENT(S) in its RESPONSE.

Nevertheless, the parent entity PARENT(S) is
not available in the standard entity set expansion
task (Rong et al., 2016; Shen et al., 2017). Thus, we
first prompt the LLM to generate the parent entity
for the seed set S. Following the (INSTRUCTION,
INPUT, RESPONSE) schema of Llama-3, we form
the instruction as follows:

INSTRUCTION: Given a list of entities, output the most
likely parent class for the entity given by user.
INPUT: Find the parent class for {s1, s2, ..., sM}.
RESPONSE: The parent class is

The generated parent entity PARENT(S) is then
used to guide the expansion process:

INSTRUCTION: Given a category and an entity set be-
longing to this category, output other entities belonging
to this category and sharing the same granularity as the
seeds.
INPUT: Find other entities belonging to the category
PARENT(S) and sharing the same granularity as the
seeds {s1, s2, ..., sM}.
RESPONSE: The expanded entities are

The LLM will generate a set of expanded en-
tities, which we denote as R = {r1, r2, ..., rK}.
After that, we perform a ranking step to sort these
entities. To be specific, we use a pre-trained en-



coder language model (e.g., BERT (Devlin et al.,
2019)) to compute the similarity score between
each generated entity r ∈ R and PARENT(S):

sim(r, PARENT(S)) = cos
(
E(r),E(PARENT(S))

)
, (1)

where E(·) denotes the average output token em-
bedding after feeding the entity name into the pre-
trained encoder. All entities in R are then ranked
according to sim(·, PARENT(S)). Afterwards, we
add the top-ranked entities to the seed entity set S
and rerun the expansion process with the enriched
seed set. This process can be conducted iteratively,
following the common practice of previous entity
set expansion algorithms (Shen et al., 2017; Zhang
et al., 2020). After the final iteration, we rank all
seeds and expanded entities (except the original
seeds which should not appear in the output) ac-
cording to sim(·, PARENT(S)) and obtain a list,
S+, of expanded entities.

3.2 Taxonomy Expansion

Taxonomy expansion is a parent-finding task.
Given an INPUT entity sq ∈ S+, we INSTRUCT

an LLM to identify the correct parent node
PARENT(sq) from a provided list of candidates
S = {s1, s2, ..., sM} (i.e., entities in the existing
taxonomy):

INSTRUCTION: Given a set of candidate parent classes
and an entity, output the most likely parent class for the
entity given by user.
INPUT: Given candidate parents {s1, s2, ..., sM}, find
the parent class for sq .
RESPONSE: The parent class is

In practice, however, the input taxonomy may
contain a large number of (e.g., more than 10,000)
entities (Shen et al., 2020b). If we include all of
them as candidates and put them into the instruc-
tion, the LLM may be overwhelmed by the overly
large label space and can hardly follow the instruc-
tion. To tackle this problem, we first retrieve a set
of candidates from the taxonomy and thus reduce
the label space for the LLM. More specifically,
given the query sq, we select top-U (e.g., U = 20)
entities Uq ⊆ S with the highest similarity to sq.

Uq = arg max
U⊆S,|U|=U

∑
s∈U

cos
(
E(sq),E(s)

)
. (2)

The retrieved subset Uq will replace the entire can-
didate list in the INPUT.

Since the input taxonomy contains a wealth of
(parent, child) entity pairs, we leverage this infor-
mation to fine-tune the LLM, enhancing its under-
standing of parent-child relationships and domain-
specific knowledge. To be specific, given a node si
in the input taxonomy and its parent PARENT(si),
we construct fine-tuning data in two different ways.

First, we take the siblings of PARENT(si) as dis-
tractors. In other words, the LLM needs to identify
the true parent PARENT(si) from the candidates
{PARENT(si)} ∪ SIBLING(PARENT(si)).

Second, we use Eq. (2) to find the set of top-U
entities Ui that are closest to si. Then, the LLM
needs to identify the true parent PARENT(si) from
the candidates {PARENT(si)} ∪ Ui.

Filling si and the candidates into our instruc-
tion template, we fine-tune the LLM to generate
PARENT(si).

3.3 Seed-Guided Taxonomy Construction
As shown in Figure 1(c), seed-guided taxonomy
construction can be naturally divided into two sub-
tasks: (1) expanding the entity set at each layer to
discover new entities (i.e., finding “siblings” and
“cousins”1) and (2) expanding the taxonomy by
specifying the proper “parent” for each new en-
tity. Since these two subtasks closely align with
entity set expansion and taxonomy expansion, re-
spectively, we can leverage similar instructions as
outlined in Sections 3.1 and 3.2.
Finding “Siblings” and “Cousins”. Given the
input taxonomy T = (S0,S1, ...,SL) where S0 =
{sROOT} and Sl = {sl,1, sl,2, ..., sl,Ml

} (1 ≤ l ≤
L), we adopt the following instruction:

INSTRUCTION: Given a category and an entity set be-
longing to this category, output other entities belonging
to this category and sharing the same granularity as the
seeds.
INPUT: Find other entities belonging to the category
sROOT and sharing the same granularity as the seeds
{sl,1, sl,2, ..., sl,Ml}.
RESPONSE: The expanded entities are

The major difference between this instruction
and that for entity set expansion is that we put
sROOT rather than PARENT(Sl) into the INPUT to
discover not only “siblings” but also “cousins” of
Sl. We denote the expanded entities at layer l as

1In the first step of seed-guided taxonomy construction, the
goal is to find entities that share the same semantic granularity
as the seeds at each layer. These entities are required only to
be descendants of the root node and may not necessarily share
the same parent as the seeds. Therefore, this step involves
discovering not just “siblings” but also “cousins”.



S+
l = {sl,Ml+1, sl,Ml+2, ..., sl,Ml+Nl

} (1 ≤ l ≤
L).

Finding “Parents”. For each newly discovered en-
tity sl,Ml+n ∈ S+

l \Sl, we need to insert it into the
taxonomy by finding its parent from all entities that
are one layer coarser. When l = 1, this problem is
trivial because the parent is sROOT. When l ≥ 2,
we consider the following instruction:

INSTRUCTION: Given a set of candidate parent classes
and an entity, output the most likely parent class for the
entity given by user.
INPUT: Given candidate parents {sl−1,1, sl−1,2, ...,
sl−1,Ml−1+Nl−1}, find the parent for sl,Ml+n.
RESPONSE: The parent class is

The major difference between this instruction
and that for taxonomy expansion is that the can-
didate parent list in the INSTRUCTION contains
entities at layer l − 1 only (i.e., S+

l−1) rather than
the entire input taxonomy.

In seed-guided taxonomy construction, similar
to taxonomy expansion, we are given a taxonomy
structure T as input. Thus, we can also construct
training data from T to fine-tune the LLM. Follow-
ing Section 3.2, for each seed sl,m ∈ Sl (l ≥ 2),
we train the LLM to pick the correct parent node
PARENT(sl,m) from Sl−1.

3.4 A Unified Pre-training Framework

With the above instructions, an LLM can be directly
prompted or fine-tuned to perform each task sep-
arately. However, task-specific training data may
be too limited for the model to effectively learn the
necessary skills for identifying siblings and parents.
For instance, the input taxonomy for seed-guided
taxonomy construction typically contains about 10
entities only (Shen et al., 2018a). To address this
limitation, we propose to first continuously pre-
train a general-purpose LLM on a large existing
taxonomy using the aforementioned instructions.
This pre-training step allows the model to acquire
broader knowledge and skills, which can then be
transferred to the three tasks, enhancing its perfor-
mance even with limited task-specific data.

Pre-training Data. To largely avoid overlap be-
tween pre-training data and evaluation benchmarks
in downstream tasks (e.g., Wikipedia, SemEval,
and DBLP), we adopt only one existing large-scale
taxonomy for pre-training: Comparative Toxicoge-
nomics Database (CTD) (Davis et al., 2022), where
we take its MEDIC taxonomy of disease entities.

Pre-training Tasks. Given a set of sibling entities

S = {s1, s2, ..., s|S|} and their parent PARENT(S)
in the taxonomy used for pre-training, we randomly
pick M entities from S as seeds. For ease of nota-
tion, we denote the seeds as s1, s2, ..., sM .

For the sibling-finding task, the pre-training
objective is to generate sM+1, ..., s|S| from the
seeds, where the instruction follows the sibling-
finding template in Section 3.1. For the parent-
finding task, the pre-training objective is to gener-
ate PARENT(S) for each individual seed si (1 ≤
i ≤ M) as well as for the entire set of seeds
{s1, s2, ..., sM}, where the instruction follows the
parent-finding template introduced in Section 3.2.
Intuitively, the two pre-training tasks mutually ben-
efit each other because accurately predicting the
siblings sM+1, ..., s|S| of s1, s2, ..., sM helps infer-
ring the parent PARENT(S) of s1, s2, ..., sM , and
vice versa.

4 Experiments

We evaluate the effectiveness of TAXOINSTRUCT

across all three tasks by comparing it with compet-
itive baselines on benchmark datasets. Details of
the baselines and evaluation metrics are provided
in Appendices A.1 and A.2, respectively.

4.1 Entity Set Expansion

Datasets. Following previous studies (Shen et al.,
2017; Yan et al., 2019; Zhang et al., 2020), we
use two benchmark datasets, APR and Wiki, to
evaluate entity set expansion algorithms. The two
datasets are derived from news articles (published
by Associated Press and Reuters) and Wikipedia
articles, respectively.

Baselines. The baselines for entity set expansion in-
clude EgoSet (Rong et al., 2016), SetExpan (Shen
et al., 2017), SetExpander (Mamou et al., 2018),
CaSE (Yu et al., 2019), SetCoExpan (Huang et al.,
2020), CGExpan (Zhang et al., 2020), SynSetEx-
pan (Shen et al., 2020a), ProbExpan (Li et al.,
2022), and Llama-3.1 70B (Dubey et al., 2024).
Additionally, since TAXOINSTRUCT is pre-trained
on both parent-finding and sibling-finding tasks,
we investigate whether the former enhances the
latter. To assess this, we introduce an ablation vari-
ant, NoParentPretrain, which is pre-trained on
the sibling-finding task only.

Evaluation Metric. Following previous stud-
ies (Shen et al., 2017; Yan et al., 2019; Zhang
et al., 2020), we adopt the Mean Average Preci-
sion (MAP@k) as the evaluation metric.



Table 1: Performance of compared methods in the entity
set expansion task. Bold: the best score. *: TAXOIN-
STRUCT is significantly better than this method with
p-value < 0.05. †, ‡, and ▷: the scores of this method
are reported in Zhang et al. (2020), Huang et al. (2020),
and Li et al. (2022), respectively.

Method APR Wiki
MAP@10 MAP@20 MAP@10 MAP@20

EgoSet † 0.758∗ 0.710∗ 0.904∗ 0.877∗

SetExpan † 0.789∗ 0.763∗ 0.944∗ 0.921∗

SetExpander † 0.287∗ 0.208∗ 0.499∗ 0.439∗

CaSE † 0.619∗ 0.494∗ 0.897∗ 0.806∗

SetCoExpan ‡ 0.933∗ 0.915∗ 0.976∗ 0.964∗

CGExpan † 0.992 0.990∗ 0.995 0.978∗

SynSetExpan ▷ 0.985∗ 0.990∗ 0.991∗ 0.978∗

ProbExpan ▷ 0.993 0.990∗ 0.995 0.982
Llama-3.1 70B 0.9933 0.9788∗ 0.9861∗ 0.9748∗

TAXOINSTRUCT 0.9956 0.9928 0.9957 0.9875
NoParentPretrain 0.9867∗ 0.9689∗ 0.9746∗ 0.9720∗

Implementation Details. We initialize our model
with Llama-3 8B (Dubey et al., 2024) and continu-
ously pre-train/fine-tune it using Low-Rank Adap-
tation (LoRA) (Hu et al., 2022). The optimizer is
AdamW (Loshchilov and Hutter, 2017), and the
batch size is 64. We adopt SPECTER (Cohan et al.,
2020) as the pre-trained encoder E(·) in Eqs. (1)
and (2).
Experimental Results. Table 1 presents the
MAP@10 and 20 scores of compared methods in
the entity set expansion task. We run TAXOIN-
STRUCT multiple times and report the average per-
formance. To assess statistical significance, we
conduct a two-tailed Z-test comparing TAXOIN-
STRUCT against each baseline, with significance
levels indicated in Table 1. We can observe that: (1)
TAXOINSTRUCT consistently outperforms all base-
lines, including those leveraging language model
probing (e.g., CGExpan and ProbExpan). In most
cases, the advantage of TAXOINSTRUCT is statis-
tically significant. (2) TAXOINSTRUCT performs
significantly better than NoParentPretrain, suggest-
ing that even in entity set expansion—where iden-
tifying siblings is the primarily required skill—pre-
training TAXOINSTRUCT to find parents still en-
hances the performance. This finding validates
our motivation for pre-training a unified model to
jointly address different yet related tasks.

4.2 Taxonomy Expansion
Datasets. Following (Jiang et al., 2023b), we use
two benchmark datasets, Environment and Sci-
ence, from the shared task in SemEval 2016 (Bor-
dea et al., 2016). Entities in these two datasets
are scientific concepts related to environment and
general science, respectively.

Table 2: Performance of compared methods in the tax-
onomy expansion task. Bold and *: the same meaning
as in Table 1. †, ‡, and ▷: the scores of this method are
reported in Jiang et al. (2023b), Zeng et al. (2021), and
Liu et al. (2021), respectively.

Method Environment Science
Acc Wu&P Acc Wu&P

TAXI † 0.167∗ 0.447∗ 0.130∗ 0.329∗

HypeNET † 0.167∗ 0.558∗ 0.154∗ 0.507∗

BERT+MLP † 0.111∗ 0.479∗ 0.115∗ 0.436∗

TaxoExpan † 0.111∗ 0.548∗ 0.278∗ 0.576∗

Arborist ‡ 0.4615∗ – 0.4193∗ –
Graph2Taxo ‡ 0.2105∗ – 0.2619∗ –
STEAM † 0.361∗ 0.696∗ 0.365∗ 0.682∗

TMN ‡ 0.3793∗ – 0.3415∗ –
TEMP ▷ 0.492∗ 0.777∗ 0.578∗ 0.853
GenTaxo ‡ 0.4828∗ – 0.3878∗ –
BoxTaxo † 0.381∗ 0.754∗ 0.318∗ 0.647∗

Llama-3.1 70B 0.3654∗ 0.6957∗ 0.4471∗ 0.7310∗

TAXOINSTRUCT 0.5115 0.8300 0.6165 0.8480
NoSiblingPretrain 0.4616∗ 0.7911∗ 0.5953∗ 0.8559

Baselines. The baselines for taxonomy expansion
include TAXI (Panchenko et al., 2016), HypeNET
(Shwartz et al., 2016), BERT+MLP (Devlin et al.,
2019), TaxoExpan (Shen et al., 2020b), Arborist
(Manzoor et al., 2020), Graph2Taxo (Shang et al.,
2020), STEAM (Yu et al., 2020), TMN (Zhang
et al., 2021), TEMP (Liu et al., 2021), GenTaxo
(Zeng et al., 2021) BoxTaxo (Jiang et al., 2023b),
and Llama-3.1 70B (Dubey et al., 2024). Addi-
tionally, to investigate if sibling finding helps par-
ent finding, we introduce an ablation version of
TAXOINSTRUCT, NoSiblingPretrain, for the tax-
onomy expansion task, which is pre-trained on the
parent-finding task only.

Evaluation Metrics. We adopt Accuracy (Acc)
and Wu & Palmer Similarity (Wu&P) (Wu and
Palmer, 1994) as the evaluation metrics. Previous
studies (Yu et al., 2020; Zeng et al., 2021; Jiang
et al., 2023b) also consider the mean reciprocal
rank (MRR) as an evaluation metric. However, it
requires a model to rank all nodes in the taxonomy
according to their likelihood of being the parent,
which is not applicable to TAXOINSTRUCT that
generates only one predicted parent entity.

Experimental Results. Table 2 shows the per-
formance of compared methods in taxonomy ex-
pansion. Our key observations are: (1) TAXOIN-
STRUCT significantly outperforms all baselines in
nearly every case. The only exception is that TEMP
achieves a higher Wu&P score on the Science
dataset. Apart from TEMP, GenTaxo is a strong
baseline that follows a generative paradigm for
taxonomy expansion. However, unlike TAXOIN-
STRUCT, which leverages LLMs to fully harness



Table 3: Performance of compared methods in the seed-
guided taxonomy construction task. Bold and *: the
same meaning as in Table 1.

Method
DBLP PubMed-CVD

Sibling Parent Sibling Parent
nDCG nDCG nDCG nDCG

HSetExpan 0.8814∗ 0.8268∗ 0.6515∗ 0.5085∗

NoREPEL 0.8830∗ 0.8152∗ 0.6705∗ 0.6216∗

NoGTO 0.9527∗ 0.8855∗ 0.7395∗ 0.6428∗

HiExpan 0.9524∗ 0.9045 0.7365∗ 0.7132∗

Llama-3.1 70B 0.9708∗ 0.8607∗ 0.8934∗ 0.8010

TAXOINSTRUCT 0.9817 0.9210 0.9220 0.8034
NoParentPretrain 0.9668∗ 0.7836∗ 0.8920∗ 0.7864
NoSiblingPretrain 0.9425∗ 0.9114 0.7930∗ 0.6838∗

the strengths of the generative approach, GenTaxo
relies solely on a Gated Recurrent Unit (GRU) ar-
chitecture, resulting in suboptimal performance. (2)
TAXOINSTRUCT outperforms NoSiblingPretrain
across most columns, suggesting that even in the
taxonomy expansion task—where identifying par-
ent entities is the primary objective—pre-training
the model to accurately identify siblings remains
beneficial. Combined with our ablation analysis
from entity set expansion, this finding supports the
conclusion that sibling-finding and parent-finding
skills can mutually enhance each other.

4.3 Seed-Guided Taxonomy Construction

Datasets. We use the DBLP and PubMed-CVD
datasets introduced by Shen et al. (2018a). The
seeds in our experiments are identical to those
in Shen et al. (2018a). Both datasets have a two-
layer input taxonomy. For DBLP, there are 5 seeds
at the top layer (i.e., Machine Learning, Data Min-
ing, Natural Language Processing, Information
Retrieval, and Wireless Networks) and 11 seeds at
the bottom layer. For PubMed-CVD, there are 3
seeds at the top layer (i.e., Cardiovascular Abnor-
malities, Vascular Diseases, and Heart Disease)
and 10 seeds at the bottom layer.

Baselines. The baselines for seed-guided taxon-
omy construction include HSetExpan (Shen et al.,
2017), HiExpan (Shen et al., 2018a), two abla-
tion versions of HiExpan—NoREPEL (Shen et al.,
2018a) and NoGTO (Shen et al., 2018a)—as well
as Llama-3.1 70B (Dubey et al., 2024). Besides,
following our practice in the previous two tasks, we
consider two ablation variants, NoParentPretrain
and NoSiblingPretrain.

Evaluation Metrics. At the top layer, both our
TAXOINSTRUCT model and most baselines achieve
near-perfect accuracy. Therefore, our evaluation
focuses on the more challenging bottom layer. We

Table 4: Performance of TAXOINSTRUCT with different
LLM backbones. For the seed-guided taxonomy con-
struction task (i.e., DBLP and PubMed-CVD), we show
Sibling nDCG@50; for the taxonomy expansion task
(i.e., Environment and Science), we show Wu&P.

Method DBLP PubMed-CVD Environment Science

Strongest Baseline 0.9708 0.8934 0.777 0.853

TAXOINSTRUCT

Llama-3 8B 0.9817 0.9220 0.8300 0.8480
Llama-2-chat 7B 0.9713 0.8923 0.7739 0.7370
Mistral 7B 0.9635 0.9162 0.7552 0.8437
Gemma 7B 0.9685 0.8627 0.7893 0.8713

use Sibling nDCG@k to assess the accuracy of
the sibling-finding step and Parent nDCG@k to
evaluate the accuracy of the parent-finding step.
Experimental Results. Table 3 demonstrates the
Parent and Sibling nDCG@50 scores of compared
methods in seed-guided taxonomy construction.
We find that: (1) TAXOINSTRUCT clearly outper-
forms all baselines in both the sibling-finding and
parent-finding steps across both datasets. Notably,
identifying correct sibling terms that are relevant
to the taxonomy is a prerequisite for accurately de-
termining their parent categories. If an expanded
sibling is incorrect (i.e., it does not belong at this
layer or anywhere in the taxonomy), predicting its
correct parent becomes impossible. This explains
why the Sibling nDCG@50 score is always higher
than the corresponding Parent nDCG@50 score.
(2) TAXOINSTRUCT consistently outperforms the
two ablation versions, which is intuitive, as seed-
guided taxonomy construction relies on the synergy
of both skills.

4.4 Effect of the LLM Backbone
Although we use Llama-3 8B as the backbone for
TAXOINSTRUCT in previous experiments, it is im-
portant to emphasize that TAXOINSTRUCT is a ver-
satile framework that can be instantiated with vari-
ous off-the-shelf generative LLMs. To demonstrate
the generalizability of TAXOINSTRUCT, we eval-
uate its performance when Llama-2-chat 7B (Tou-
vron et al., 2023), Mistral 7B (Jiang et al., 2023a),
and Gemma 7B (Team et al., 2024) are plugged in.

Table 4 presents the performance of TAXOIN-
STRUCT with different LLM backbones. Due to
space limitations, we only display results for 4
datasets (out of the 6 used in the previous experi-
ments) and one metric for each dataset. From Ta-
ble 4, we observe that: (1) On DBLP, both Llama-3
8B and Llama-2-chat 7B allow us to outperform
the strongest baseline—Llama-3.1 70B, which has
a much larger number of parameters; on PubMed-



CVD, this could be achieved using Llama-3 8B and
Mistral 7B. (2) On the Environment dataset, both
Llama-3 8B and Gemma 7B enable our framework
to beat the best-performing baseline (i.e., TEMP).
On the Science dataset, even our default choice
Llama-3 8B does not perform the best in Table 3,
using Gemma 7B allows us to surpass the state of
the art. To summarize, the effectiveness of TAX-
OINSTRUCT is built upon the power of our pro-
posed framework and LLMs in general, rather than
a specific choice of Llama-3 8B.

5 Related Work

Entity Set Expansion. EgoSet (Rong et al., 2016)
pioneers entity set expansion using skip-grams
and word2vec embeddings (Mikolov et al., 2013).
Following this, SetExpan (Shen et al., 2017) em-
ploys an iterative bootstrapping framework, while
CaSE (Yu et al., 2019) rank candidates via distribu-
tional similarity among context-free embeddings to
rank candidate entities according to the seeds. With
pre-trained contextualized language models such
as BERT (Devlin et al., 2019) and GPT-2 (Rad-
ford et al., 2019), CGExpan (Zhang et al., 2020)
generates class names to prevent semantic drift,
ProbExpan (Li et al., 2022) refines entity represen-
tations using contrastive learning, and GAPA (Li
et al., 2023) leverages autoregressive models for
context pattern generation. However, all afore-
mentioned approaches do not explore the power
of LLMs with billions of parameters and the abil-
ity to follow instructions, while TAXOINSTRUCT

extensively exploits the effectiveness of LLMs in
entity set expansion.

Taxonomy Expansion. Earlier, lexical pat-
terns (Panchenko et al., 2016) and distributional
word representations (Shwartz et al., 2016) are used
to infer the hypernym-hyponym relationship. Later,
TaxoExpan (Shen et al., 2020b) and STEAM (Yu
et al., 2020) propose to encode local ego-graphs
and mini-paths, respectively, corresponding to each
entity in the taxonomy. In addition, TMN (Zhang
et al., 2021) examines candidate parents and chil-
dren via a triplet matching network. Most recently,
TaxoPrompt (Xu et al., 2022) and TacoPrompt (Xu
et al., 2023) adopt prompt tuning on BERT-based
encoder models to generate contextualized repre-
sentations of the global taxonomy structure; Box-
Taxo (Jiang et al., 2023b) uses box embeddings to
replace single-vector embeddings to better capture
the hierarchical structure of concepts. Introducing

a more challenging version of taxonomy expan-
sion, Shen et al. (2018a) study seed-guided taxon-
omy construction which requires the initial step
of extracting new entities from text corpora given
a small set of seeds before performing taxonomy
expansion. Different from previous approaches
that utilize context-free embeddings, graph neu-
ral networks, and BERT-based language models,
our TAXOINSTRUCT model unleashes the power
of LLMs such as Llama-3. More recently, there are
studies (Zeng et al., 2024a,b) leveraging GPT-4 and
advanced prompting techniques for taxonomy ex-
pansion. By contrast, TAXOINSTRUCT is a unified
framework aiming to jointly solve entity set expan-
sion, taxonomy expansion, and seed-guided taxon-
omy construction rather than any of them alone.

Structure-Aware Prompting and Instruction
Tuning. There has been increasing attention on
prompting and instruction-tuning LLMs to learn
from (text-rich) structured data (Jin et al., 2023; Li
et al., 2024; Chen et al., 2024). For instance, Wang
et al. (2023a) strategically prompt LLMs to solve
graph problems such as shortest paths and maxi-
mum flows; InstructGLM (Ye et al., 2024) shows
that LLMs fine-tuned on node classification and
link prediction can outperform competitive graph
neural network baselines; Zhang et al. (2024) put
entity triplets into an instruction template for LLMs
to perform knowledge graph completion; Guo et al.
(2023) conduct a benchmark study on LLMs’ abil-
ity to understand graph data by using formal lan-
guage to describe graphs. Different from these
studies that focus on graph structures (e.g., aca-
demic networks), our work specifically explores
how taxonomy structures can guide the instruction
tuning process to unleash LLMs’ potential to solve
entity enrichment tasks in a unified way.

6 Conclusions

In this paper, we present TAXOINSTRUCT, a uni-
fied framework designed to jointly address en-
tity set expansion, taxonomy expansion, and seed-
guided taxonomy construction. We introduce a
taxonomy-guided instruction tuning technique that
effectively exploits the existing large-scale taxon-
omy to teach LLMs the commonality of the three
tasks (i.e., the skills of sibling finding and parent
finding). Through extensive experiments on widely
used benchmarks for all three tasks, we demon-
strate the superiority of TAXOINSTRUCT over com-
petitive task-specific baselines.



Limitations

Our work has the following limitations. First, since
our primary goal is to verify the universal effec-
tiveness of LLM instruction tuning across all three
tasks, we intentionally keep our framework as sim-
ple as possible, avoiding complex signals utilized
in previous studies such as paths (Liu et al., 2021;
Jiang et al., 2022) and local graphs (Mao et al.,
2020; Wang et al., 2021). Second, after instruction
tuning, TAXOINSTRUCT can be further equipped
with inference-time techniques such as chain-of-
thought prompting (Wei et al., 2022b) and self-
consistency reasoning (Wang et al., 2023b). In-
tegrating these techniques into TAXOINSTRUCT

could further enhance its performance, which we
leave for future work.
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A Appendix

A.1 Details of Baselines

For all three tasks, we use Llama-3.1 70B (Dubey
et al., 2024) as one of our baselines, which is di-
rectly prompted with the same instructions as TAX-
OINSTRUCT. Besides, we consider the following
task-specific baselines.

A.1.1 Baselines of Entity Set Expansion
• EgoSet (Rong et al., 2016) uses skip-gram con-

text features and word2vec embeddings to ex-
pand entity sets in multiple facets.

• SetExpan (Shen et al., 2017) iteratively selects
skip-gram context features from the corpus and
proposes a rank ensemble mechanism for scoring
and selecting entities.

• SetExpander (Mamou et al., 2018) learns dif-
ferent text embeddings from different types of
context features and trains a classifier to predict
whether an entity belongs to a set.

• CaSE (Yu et al., 2019) integrates skip-grams and
word2vec embeddings to score and rank entities
from the corpus.

• SetCoExpan (Huang et al., 2020) generates aux-
iliary sets as negative sets that are closely related
to the target set and simultaneously co-expand
multiple sets.

• CGExpan (Zhang et al., 2020) infers the tar-
get semantic class names by probing a lan-
guage model and then utilizes the generated class
names to expand new entities.



• SynSetExpan (Shen et al., 2020a) jointly con-
ducts two related tasks—synonym discovery and
entity set expansion—and utilizes synonym in-
formation to enhance expansion performance.

• ProbExpan (Li et al., 2022) devises an entity-
level masked language model with contrastive
learning to refine the representation of entities
for entity set expansion.

A.1.2 Baselines of Taxonomy Expansion
• TAXI (Panchenko et al., 2016) first extracts

hypernym-hyponym pairs from text corpora us-
ing substrings and lexico-syntactic patterns, then
it organizes the extracted terms into a coherent
taxonomy.

• HypeNET (Shwartz et al., 2016) employs
LSTM to concurrently capture the distributional
and relational information between term pairs
along dependency paths.

• BERT+MLP (Devlin et al., 2019) first acquires
term embeddings from a pre-trained BERT
model and then inputs the embeddings into a
multi-layer perceptron to predict the hypernymy
relationship.

• TaxoExpan (Shen et al., 2020b) leverages graph
neural networks to encode local ego-graphs in
the input taxonomy to improve entity represen-
tations. In the original paper, context-free word
embeddings are used as input features. Follow-
ing (Yu et al., 2020), we replace context-free
embeddings with more powerful BERT embed-
dings for this baseline.

• Arborist (Manzoor et al., 2020) explores hetero-
geneous edge semantics by employing a large-
margin ranking loss to ensure an upper limit on
the shortest-path distance between predicted and
actual parent nodes.

• Graph2Taxo (Shang et al., 2020) utilizes cross-
domain graph structures and constraint-based
learning of directed acyclic graphs.

• STEAM (Yu et al., 2020) learns representations
for each pair of (new entity, existing entity) from
multiple views using paths sampled from the
taxonomy.

• TMN (Zhang et al., 2021) proposes a triplet
matching network to match a query with
hypernym-hyponym pairs. It enables insertion

of non-leaf query concepts into an existing tax-
onomy.

• TEMP (Liu et al., 2021) employs pre-trained
contextual encoders to predict the position
of new concepts by ranking the generated
taxonomy-paths.

• GenTaxo (Zeng et al., 2021) learns the contex-
tual embeddings from their surrounding graph-
based and language-based relational information
and leverages the corpus for pre-training a con-
cept name generator.

• BoxTaxo (Jiang et al., 2023b) represents entities
as boxes to capture their parent-child relation-
ship. It optimizes the box embedding (Vilnis
et al., 2018) of each entity from a joint view of
geometry and probability.

A.1.3 Baselines of Seed-Guided Taxonomy
Construction

• HSetExpan (Shen et al., 2017) iteratively ap-
plies SetExpan at each layer of the input taxon-
omy. For each expanded bottom-layer node, it
uses REPEL (Qu et al., 2018), a weakly super-
vised relation extraction model, to find the most
proper parent at the top layer.

• HiExpan (Shen et al., 2018a) combines the tech-
niques of flat set expansion, parent-child rela-
tionship inference, and global optimization of
the taxonomy structure by jointly utilizing skip-
grams, context-free text embeddings, and entity
types.

• HiExpan-NoREPEL (Shen et al., 2018a) is an
ablation version of HiExpan, which does not
utilize REPEL for parent-child relationship in-
ference. Instead, it uses context-free text embed-
dings only.

• HiExpan-NoGTO (Shen et al., 2018a) is an ab-
lation version of HiExpan, which does not have
the global optimization optimization module.

Shen et al. (2018a) have released the output tax-
onomies2 of the four baselines above on DBLP and
PubMed-CVD, which we use for evaluation.

2http://bit.ly/2Jbilte

http://bit.ly/2Jbilte


A.2 Details of Evaluation Metrics
A.2.1 Metric for Entity Set Expansion
We use MAP@k as the evaluation metric. For-
mally, given a set of seeds S = {s1, ..., sM}
and the top-k expanded entities S+ = {sM+1, ...,
sM+k}, the average precision AP@k is defined as

AP@k(S,S+) =
1

k

∑
i:1≤i≤k,
sM+i∼S

∑i
j=1 I(sM+j ∼ S)

i
. (3)

Here, sM+j ∼ S denotes that the expanded entity
sM+j and the seed entities in S belong to the same
semantic class; I(·) is the indicator function. Since
there are multiple testing queries (i.e., multiple
sets of seeds) S1, ...,SC and their corresponding
expansion results S+

1 , ...,S+
C , the MAP@k score

is defined as

MAP@k =
1

C

C∑
i=1

AP@k(Si,S+
i ). (4)

A.2.2 Metrics for Taxonomy Expansion
We use Accuracy (Acc) and Wu & Palmer Similar-
ity (Wu&P) as the evaluation metrics.
Acc is the exact match accuracy of the predicted

parent node of each testing entity. Formally, as-
sume the testing set has C samples x1, ..., xC , and
their ground-truth parents in the input taxonomy
are y1, ..., yC , respectively. Then the accuracy of
the learned parent-child relationship PARENT+(·)
is defined as

Acc =
1

C

C∑
i=1

I(PARENT+(xi) = yi). (5)

Wu&P (Wu and Palmer, 1994) calculates the
similarity between the predicted parent and the
ground-truth parent based on their distance in the
taxonomy.

Wu&P =
1

C

C∑
i=1

2× depth(LCP(PARENT+(xi), yi))

depth(PARENT+(xi)) + depth(yi)
,

(6)

where LCP(·, ·) is the lowest common ancestor of
two nodes, and depth(·) denotes the depth of a
node in the taxonomy.

A.2.3 Metrics for Seed-Guided Taxonomy
Construction

We use Sibling nDCG@k and Parent nDCG@k
as the evaluation metrics. Formally, in a two-
layer taxonomy, given the bottom-layer seeds S2 =
{s2,1, ..., s2,M}, we examine the top-k expanded

Table 5: Performance comparison for different values
of U (i.e., the number of retrieved candidate parents).

U
Environment Science

Llama-3.1-70B TAXOINSTRUCT MaxAcc Llama-3.1-70B TAXOINSTRUCT MaxAcc

10 46.15 50.00 59.62 42.35 50.59 62.35
20 36.54 51.15 69.23 44.71 61.65 72.94
40 42.31 40.38 73.08 51.76 57.65 83.53
60 44.23 44.23 80.77 52.94 60.00 85.88
100 34.62 40.38 84.62 49.41 60.00 90.59

bottom-layer entities S+
2 = {s2,M+1, ..., s2,M+k}.

Sibling nDCG@k evaluates the accuracy of the
sibling-finding step (i.e., whether s2,M+i and S2

belong to the same semantic class).

Sibling nDCG@k =

∑k
i=1

I(s2,M+i∼S2)

log2(i+1)∑k
i=1

1
log2(i+1)

. (7)

Parent nDCG@k evaluates the accuracy of the
parent-finding step. For each expanded bottom-
layer entity s2,M+i, let s1,p(i) denote its ground-
truth parent at the top layer. Then, this metric can
be defined as

Parent nDCG@k =

∑k
i=1

I(PARENT+(s2,M+i)=s1,p(i))

log2(i+1)∑k
i=1

1
log2(i+1)

.

(8)

B Hyperparameter Study

To better understand how the performance of TAX-
OINSTRUCT in taxonomy expansion is influenced
by the number of candidates retrieved from the
taxonomy. We conduct an experiment varying U
(with 10, 20, 40, 60, and 100) and report the results
for both Llama-3.1-70B and TAXOINSTRUCT. Our
findings indicate that there is no clear positive cor-
relation between the number of candidate entities in
the instruction and the model’s accuracy. A larger
U implies a higher upper bound, as there will be
more candidate parent sets that contain the correct
parents. This upper bound is represented as Max-
Acc in the table. Meanwhile, we also observe that
an excessively long context can degrade actual per-
formance. The best choice of U for Llama-3.1-70B
on the Environment dataset is 10, which outper-
forms the performance at U = 100 by about 10%.
Additionally, our experiment further confirms the
superiority of TAXOINSTRUCT. Across nearly all
values of U , TAXOINSTRUCT outperforms Llama-
3.1-70B, despite the latter being 10 times larger
than the backbone of TAXOINSTRUCT. For TAX-
OINSTRUCT, we believe 20 is a generally reason-
able choice and adopt it as our default setting.
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