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Abstract

Motivation: State-of-the-art biomedical named entity recognition (BioNER) systems often require

handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although

recent studies explored using neural network models for BioNER to free experts from manual feature

engineering, the performance remains limited by the available training data for each entity type.

Results: We propose a multi-task learning framework for BioNER to collectively use the training

data of different types of entities and improve the performance on each of them. In experiments on

15 benchmark BioNER datasets, our multi-task model achieves substantially better performance

compared with state-of-the-art BioNER systems and baseline neural sequence labeling models.

Further analysis shows that the large performance gains come from sharing character- and word-

level information among relevant biomedical entities across differently labeled corpora.

Availability and implementation: Our source code is available at https://github.com/yuzhimanhua/

lm-lstm-crf.

Contact: xwang174@illinois.edu or xiangren@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomedical named entity recognition (BioNER) is one of the most

fundamental task in biomedical text mining that aims to automatic-

ally recognize and classify biomedical entities (e.g. genes, proteins,

chemicals and diseases) from text. BioNER can be used to identify

new gene names from text (Smith et al., 2008). It also serves as a

primitive step of many downstream applications, such as relation

extraction (Cokol et al., 2005) and knowledge base completion

(Szklarczyk et al., 2016, 2017; Wei et al., 2013; Xie et al., 2013).

BioNER is typically formulated as a sequence labeling problem

whose goal is to assign a label to each word in a sentence. State-of-

the-art BioNER systems often require handcrafted features (e.g.

capitalization, prefix and suffix) to be specifically designed for each

entity type (Ando, 2007; Leaman and Lu, 2016; Lu et al., 2015; Zhou

and Su, 2004). This feature generation process takes the majority of

time and cost in developing a BioNER system (Leser and Hakenberg,

2005), and leads to highly specialized systems that cannot be directly

used to recognize new types of entities. The accuracy of the resulting

BioNER tools remains a limiting factor in the performance of biomed-

ical text mining pipelines (Huang and Lu, 2016).

Recent NER studies consider neural network models to automat-

ically generate quality features (Chiu and Nichols, 2016; Lample

et al., 2016; Liu et al., 2018; Ma and Hovy, 2016). Crichton et al.

took each word token and its surrounding context words as input

into a convolutional neural network (CNN). Habibi et al. adopted

the model from Lample et al. and used word embeddings as input

into a bidirectional long short-term memory-conditional random

field (BiLSTM-CRF) model. These neural network models free

experts from manual feature engineering. However, these models
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have millions of parameters and require very large datasets to reli-

ably estimate the parameters. This poses a major challenge for bio-

medicine, where datasets of this scale are expensive and slow to

create and thus neural network models cannot realize their potential

performance to the fullest (Camacho et al., 2018). Although neural

network models can outperform traditional sequence labeling mod-

els [e.g. CRF models (Lafferty et al., 2001)], they are still outper-

formed by handcrafted feature-based systems in multiple domains

(Crichton et al., 2017).

One direction to address the above challenge is to use the labeled

data of different entity types to augment the training signals for each

of them, as information like word semantics and grammatical struc-

ture may be shared across different datasets. However, simply com-

bining all datasets and training one single model over multiple entity

types can introduce many false negatives because each dataset is typ-

ically specifically annotated for one or only a few entity types. For

example, combining dataset A for gene recognition and dataset B

for chemical recognition will result in missing chemical entity labels

in dataset A and missing gene entity labels in dataset B. Multi-task

learning (MTL) (Collobert and Weston, 2008; Søgaard and

Goldberg, 2016) offers a solution to this issue by collectively train-

ing a model on several related tasks, so that each task benefits model

learning in other tasks without introducing additional errors. MTL

has been successfully applied in natural language processing

(Collobert and Weston, 2008), speech recognition (Deng et al.,

2013), computer vision (Girshick, 2015) and drug discovery

(Ramsundar et al., 2015). But MTL is less commonly used and has

seen limited success in BioNER so far. Crichton et al. explored MTL

with a CNN model for BioNER. However, Crichton et al. only con-

siders word-level features as input, ignoring character-level lexical

information which are often crucial for modeling biomedical entities

(e.g. -ase could be an important subword feature for gene/protein

entity recognition). As a result, their best performing multi-task

CNN model does not outperform state-of-the-art systems that use

on handcrafted features (Crichton et al., 2017).

In this paper, we propose a new multi-task learning framework

using char-level neural models for BioNER. The proposed frame-

work, despite being simple and not requiring any feature engineer-

ing, achieves excellent benchmark performance. Our multi-task

model is built upon a single-task neural network model (Liu et al.,

2018). In particular, we consider a BiLSTM-CRF model with an

additional context-dependent BiLSTM layer for modeling character

sequences. A prominent advantage of our multi-task model is that

inputs from different datasets can efficiently share both character-

and word-level representations, by reusing parameters in the corre-

sponding BiLSTM units. We compare the proposed multi-task

model with state-of-the-art BioNER systems and baseline neural net-

work models on 15 benchmark BioNER datasets and observe sub-

stantially better performance. We further show through detailed

experimental analysis on five datasets that the proposed approach

adds marginal computational overhead and outperforms strong

baseline neural models that do not consider multi-task learning, sug-

gesting that multi-task learning plays an important role in its suc-

cess. Altogether, this work introduces a new text-mining approach

that can help scientists exploit knowledge buried in biomedical lit-

erature in a systematic and unbiased way.

2 Background

2.1 NER problem definition
Let U denote the set of labels indicating whether a word is part of a specif-

ic entity type or not. Given a sequence of words w ¼ fw1;w2; . . . ;wng,

the output is a sequence of labels y ¼ fy1; y2; . . . ; yng; yi 2 U. For ex-

ample, given a sentence ‘. . . including the RING1. . .’, the output should

be ‘. . . O O S-GENE. . .’ in which ‘O’ indicates a non-entity type and ‘S-

GENE’ indicates a single-token GENE type.

2.2 Long short-term memory (LSTM)
Long short-term memory neural network is a specific type of recur-

rent neural network that models dependencies between elements in

a sequence through recurrent connections (Fig. 1). The input to an

LSTM network is a sequence of vectors X ¼ fx1; x2; . . . ; xTg, where

vector xi is a representation vector of a word in the input sentence.

The output is a sequence of vectors H ¼ fh1; h2; . . . ; hTg, where hi is

a hidden state vector. At step t of the recurrent calculation, the net-

work takes xt; ct�1;ht�1 as inputs and produces ct;ht via the follow-

ing intermediate calculations:

it ¼ rðWixt þ Uiht�1 þ biÞ
ft ¼ rðWf xt þ Uf ht�1 þ bf Þ
ot ¼ rðWoxt þ Uoht�1 þ boÞ

gt ¼ tan hðWgxt þ Ught�1 þ bgÞ
ct ¼ ft � ct�1 þ it � gt

ht ¼ ot � tan hðctÞ;

where rð�Þ and tan hð�Þ denote element-wise sigmoid and hyperbolic

tangent functions, respectively, and � denotes element-wise multi-

plication. The it; ft and ot are referred to as input, forget and output

gates, respectively. The gt and ct are intermediate calculation steps.

At t¼1, h0 and c0 are initialized to zero vectors. The trainable

parameters are Wj; Uj and bj for j 2 fi; f ; o; gg.
The LSTM architecture described above can only process the input

in one direction. The bi-directional long short-term memory

(BiLSTM) model improves the LSTM by feeding the input to the

LSTM network twice, once in the original direction and once in the

reversed direction. Outputs from both directions are concatenated to

represent the final output. This design allows for detection of depend-

encies from both previous and subsequent words in a sequence.

2.3 Bi-directional long short-term memory-conditional

random field (BiLSTM-CRF)
A naive way of applying the BiLSTM network to sequence labeling

is to use the output hidden state vectors to make independent tag-

ging decisions. However, in many sequence labeling tasks such as

BioNER, it is useful to also model the dependencies across output

tags. The BiLSTM-CRF network adds a conditional random field

(CRF) layer on top of a BiLSTM network. This BiLSTM-CRF net-

work takes the input sequence X ¼ fx1;x2; . . . ;xng to predict an

output label sequence y ¼ fy1; y2; . . . ; yng. A score is defined as:

sðX; yÞ ¼
Xn

i¼0

Ayi ;yiþ1
þ
Xn

i¼1

Pi;yi
;

where P is an n�k matrix of the output from the BiLSTM layer, n

is the sequence length, k is the number of distinct labels, A is a ðkþ
2Þ � ðkþ 2Þ transition matrix and Ai;j represents the transition

probability from the ith label to the jth label. Note that two add-

itional labels <start> and <end> are used to represent the start and

end of a sentence, respectively. We further define YX as all possible

sequence labels given the input sequence X. The training process

maximizes the log-probability of the label sequence y given the input

sequence X:

1746 X.Wang et al.



logðpðyjXÞÞ ¼ log
esðX;yÞ

P
y02YX

esðX;y0Þ : (1)

A three-layer BiLSTM-CRF architecture is employed by Lample

et al. and Habibi et al. to jointly model the word and the character

sequences in the input sentence. In this architecture, the first

BiLSTM layer takes character embedding sequence of each word as

input, and produces a character-level representation vector for this

word as output. This character-level vector is then concatenated

with a word embedding vector, and fed into a second BiLSTM layer.

Lastly, a CRF layer takes the output vectors from the second

BiLSTM layer, and outputs the best tag sequence by maximizing the

log-probability in Equation 1.

In practice, the character embedding vectors are randomly ini-

tialized and co-trained during the model training process. The word

embedding vectors are retrieved directly from a pre-trained word

embedding lookup table. The classical Viterbi algorithm is used to

infer the final labels for the CRF model. The three-layer BiLSTM-

CRF model is a differentiable neural network architecture that can

be trained by backpropagation.

3 Deep multi-task learning for BioNER

3.1 Single-task model (STM)
The vanilla BiLSTM-CRF model can learn high-quality representa-

tions for words that appeared in the training dataset. However, it

often fails to generalize to out-of-vocabulary (OOV) words (i.e.

words that did not appear in the training dataset) because they do

not have a pre-trained word embedding. These OOV words are

common in biomedical text (67.21% OOV words of the datasets in

Table 1). Therefore, for the baseline single-task BioNER model, we

use a neural network architecture that better handles OOV words.

As shown in Figure 2, our single-task model consists of three layers.

In the first layer, a BiLSTM network is used to model the character

sequence of the input sentence. We use character embedding vectors

as input to the network. Hidden state vectors at the word bounda-

ries of this character-level BiLSTM are then selected and concaten-

ated with word embedding vectors to form word representations.

Next, these word representation vectors are fed into a word-level

BiLSTM layer (i.e. the upper BiLSTM layer in Fig. 2). Lastly, output

of this word-level BiLSTM is fed into the CRF layer for label predic-

tion. Compared to the vanilla BiLSTM-CRF model, a major advan-

tage of this model is that it can infer the meaning of an out-of-

vocabulary word from its character sequence and other characters

around it. For example, the model is now able to infer that ‘RING2’

likely represents a gene symbol, even though then network may have

only seen the word ‘RING1’ during training.

3.2 Multi-task models (MTMs)
An important characteristic of the BioNER task is the limited avail-

ability of supervised training data. We propose a multi-task learning

approach to address this problem by training different BioNER

models on datasets with different entity types while sharing parame-

ters across these models. We hypothesize that the proposed ap-

proach can make more efficient use of the data and encourage the

models to learn representations of words and characters (which are

shared between multiple corpora) in a more effective and general-

ized way.

We give a formal definition of the multi-task setting as the fol-

lowing. Given m datasets, for i 2 f1; . . . ;mg, each dataset Di con-

sists of ni training samples, i.e. Di ¼ fwi
j; y

i
jg

ni

j¼1. We denote the

training matrix for each dataset as Xi ¼ fxi
1; . . . ; xi

ni
g (Xi is the fea-

ture representation of the input word sequence wi
j) and the labels for

each dataset as yi ¼ fyi
1; . . . ; yi

ni
g. The model parameters include the

word-level BiLSTM parameters (hw
i ), the character-level BiLSTM

parameters (hc
i ) and the output CRF parameters (ho

i ). A multi-task

model therefore consists of m different models, each trained on a

separate dataset, while sharing part of the model parameters across

datasets. The loss function L of the multi-task model is:

L ¼
Xm

i¼1

kiLi ¼
Xm

i¼1

ki logðPhw
i ;h

c
i ;h

o
i
ðyijXiÞÞ:

The log-likelihood term is shown in Equation 1 and ki is a posi-

tive hyper-parameter that controls the contribution of each dataset.

We observed that our multi-task model is able to achieve very com-

petitive performance with ki ¼ 1 on all datasets that we evaluated

on and therefore use this value in our experiments. However, we be-

lieve that the performance can be improved with further tuned ki

values.

We propose three different multi-task models, as illustrated in

Figure 3. These three models differ in which part of the model

parameters (hw
i ; h

c
i ; h

o
i ) are shared across multiple datasets:

MTM-C In this model, hc
i ¼ hc are shared among different tasks.

All datasets are iteratively used to train the model. When a dataset is

used, the parameters updated during the training are hc and hw
i . The

detailed architecture of this multi-task model is shown in Figure 3a.

MTM-W In this model, hw
i ¼ hw are shared among different

tasks. When a dataset is used, the parameters updated during the

training are hw and hc
i . The detailed architecture of this multi-task

model is shown in Figure 3b.

MTM-CW In this model, hc
i ¼ hc and hw

i ¼ hw are shared among

different tasks. Each dataset has its specific ho
i for label prediction.

MTM-CW shared the most information across tasks compared with

the other two multi-task models. It enables sharing both character-

and word-level information between different biomedical entities,

while the other two models only enable sharing part of the informa-

tion. The detailed architecture of this multi-task model is shown in

Figure 3c.

4 Experimental setup

4.1 Datasets
We test our method on the same 15 datasets used by Crichton et al.,

and find our model achieves substantially better performance on 14

of them compared with baseline neural network models. Due to

space limit, here we report detailed results of the multi-task model

on five main datasets (Table 1), which altogether cover major bio-

medical entity types (e.g. genes, proteins, chemicals, diseases). We

also include full results on all the 15 datasets in Supplementary

Material: Performance comparison on 15 datasets. The performance

of the multi-task model is slightly different when trained on 5 data-

sets compared with trained on 15 datasets (shown in Supplementary

Fig. 1. Architecture of long short-term memory neural network

Cross-type biomedical named entity recognition with deep multi-task learning 1747

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty869#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty869#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty869#supplementary-data


Material: Performance comparison on 15 datasets), as the MTL model

has access to more data. In our experiments, we follow the experi-

ment setup of Crichton et al. and divide each dataset into training,

development and test sets. We use training and development sets to

train the final model. All datasets are publicly available (All datasets

can be downloaded from: https://github.com/cambridgeltl/MTL-

Bioinformatics-2016.). As part of preprocessing, word labels are

encoded using an IOBES scheme. In this scheme, for example, a

word describing a gene entity is tagged with ‘B-Gene’ if it is at the

beginning of the entity, ‘I-Gene’ if it is in the middle of the entity,

and ‘E-Gene’ if it is at the end of the entity. Single-word gene entities

are tagged with ‘S-Gene’. All other words not describing entities of

interest are tagged as ‘O’. Next, we briefly describe the five main

datasets and their corresponding state-of-the-art BioNER systems.

BC2GM The state-of-the-art system reported for the BioCreative

II gene mention recognition task adopts semi-supervised learning

method with alternating structure optimization (Ando, 2007).

BC4CHEMD The state-of-the-art system reported for the

BioCreative IV chemical entity mention recognition task is the

CHEMDNER system (Lu et al., 2015), which is based on mixed

conditional random fields with Brown clustering of words.

BC5CDR The state-of-the-art system reported for the most re-

cent BioCreative V chemical and disease mention recognition task is

the TaggerOne system (Leaman and Lu, 2016), which uses a semi-

Markov model for joint entity recognition and normalization.

NCBI-Disease The NCBI disease dataset was initially introduced

for disease name recognition and normalization. It has been widely

used for a lot of applications. The state-of-the-art system on this

dataset is also the TaggerOne system (Leaman and Lu, 2016).

JNLPBA The state-of-the-art system (Zhou and Su, 2004) for the

2004 JNLPBA shared task on biomedical entity (gene/protein,

DNA, RNA, cell line, cell type) recognition uses a Hidden Markov

Model (HMM). Although this task and the model is a bit old com-

pared with the others, it still remains a competitive benchmark

method for comparison.

4.2 Evaluation metrics
We report the performance of all the compared methods on the test

set. We deem each predicted entity as correct only if both the entity

boundary and entity types are the same as the ground-truth annota-

tion (i.e. exact match). Then we calculate the precision, recall and

F1 scores on all datasets and macro-averaged F1 scores on all entity

types. For error analysis, we compare the ratios of false positive (FP)

and false negative (FN) labels in the single-task and the multi-task

models and include the results in Supplementary Material: Error

analysis.

The test set of the BC2GM dataset is constructed slightly differ-

ently compared to the test sets of other datasets. BC2GM additional-

ly provides a list of alternative answers for each entity in the test set.

A predicted entity is deemed correct as long as it matches the ground

truth or one of the alternative answers. We refer to this measure-

ment as alternative match and report scores under both exact match

and alternative match for the BC2GM dataset.

4.3 Pre-trained word embeddings
We initialize the word embedding matrix with pre-trained word vec-

tors from Pyysalo et al., 2013 in all experiments (The pre-trained

word vectors can be download from: http://bio.nlplab.org/.). These

word embeddings are trained using a skip-gram model, as described

in Mikolov et al. (2013). These word vectors are trained on three

different datasets: (i) abstracts from the PubMed database, (ii)

abstracts from the PubMed database together with full-text articles

from the PubMed Central (PMC) and (iii) the entire Pubmed data-

base of abstracts and full-text articles together with the Wikipedia

corpus. We found the third set of word vectors lead to best results

on development set and therefore used it for the model development.

We provide a full comparison of different word embeddings in

Supplementary Material: Performance of Word Embeddings. In all

experiments, we replace rare words (i.e. words with a frequency of

Fig. 2. Architecture of a single-task neural network. The input is a sentence from biomedical literature. Rectangles denote character and word embeddings; empty

round rectangles denote the first character-level BiLSTM; shaded round rectangles denote the second word-level BiLSTM; pentagons denote the concatenation

units. The tags on the top, e.g. ‘O’, ‘S-GENE’, are the output of the final CRF layer, which are the entity labels we get for each word in the sentence

Table 1. Biomedical NER datasets used in the experiments

Dataset Size Entity types and counts

BC2GM 20 000 sentences Gene/Protein (24 583)

BC4CHEMD 10 000 abstracts Chemical (84 310)

BC5CDR 1500 articles Chemical (15 935), Disease (12 852)

NCBI-Disease 793 abstracts Disease (6881)

JNLPBA 2404 abstracts Gene/Protein (35 336),

Cell Line (4330), DNA (10 589),

Cell Type (8649), RNA (1069)
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less than 5) with a special <UNK> token, whose embedding is ran-

domly initialized and fine-tuned during model training.

4.4 Training details
All the neural network models are trained on one GeForce GTX

1080 GPU. To train our neural models, we use a learning rate of

0.01 with a decay rate of 0.05 applied to every epoch of training.

The dimensions of word and character embedding vectors are set to

be 200 and 30, respectively (Liu et al., 2018). We adopted 200 (best

performance among 100, 200 and 300) for both character- and

word-level BiLSTM layers. Note that Liu et al. considers advanced

strategies, such as highway structures, to further improve perform-

ance. We did not observe any significant performance boost with

these advanced strategies, thus do not adopt these strategies in this

work. The performance of the model variations with these advanced

strategies can be found in Supplementary Material: Performance of

Model Variations. To train the baseline neural network models, we

use the default parameter settings as used in their paper (Lample

et al., 2016; Habibi et al., 2017; Ma and Hovy, 2016) because we

found the default parameters also lead to almost optimal perform-

ance on the development set.

5 Results

5.1 Performance comparison on benchmark datasets
We compare the proposed single-task (Section 3.1) and multi-task

models (Section 3.2) with state-of-the-art BioNER systems (reported

for each dataset) and three neural network models from Crichton

et al., Lample et al.; Habibi et al. and Ma and Hovy. The evaluation

metrics include precision, recall and F1 score (Tsai et al., 2006)

(Table 2). We denote results of the best system priorly reported for

each dataset as ‘Dataset Benchmark’. For method proposed by

Crichton et al., we quote their experiment results directly. For other

neural network models, we repeat each experiment three times with

the mean and standard deviation reported (Table 2). To directly

compare with the results in Crichton et al., we measure statistical

significance with the same t-test as used in their paper.

We observe that the MTM-CW model achieves significantly

higher F1 scores than state-of-the-art benchmark systems (column

Dataset Benchmark in Table 2) on all of the five datasets. Following

established practice in the literature, we use exact match to compare

benchmark performance on all the datasets except for the BC2GM,

where we report benchmark performance based on alternative

match. Furthermore, MTM-CW generally achieves significantly

higher F1 scores than other neural network models. These results

show that the proposed multi-task learning neural network signifi-

cantly outperforms state-of-the-art systems and other neural net-

works. In particular, the MTM-CW model consistently achieves a

better performance than the single task model, demonstrating that

multi-task learning is able to successfully leverage information

across different datasets and mutually enhance performance on each

single task. We further investigate the performance of three multi-

task models (MTM-C, MTM-W and MTM-CW, Table 3). Results

show that the best performing multi-task model is MTM-CW, indi-

cating the importance of morphological information captured by

character-level BiLSTM as well as lexical and contextual informa-

tion captured by word-level BiLSTM.

5.2 Performance on major biomedical entity types
We also conduct more fine-grained comparison of all models on

four major biomedical entity types: genes/proteins, chemicals, dis-

eases and cell lines since they are the most often annotated entity

types (Fig. 4). Each entity type comes from multiple datasets: genes/

proteins from BC2GM and JNLPBA, chemicals from BC4CHEMD

and BC5CDR, diseases from BC5CDR and NCBI-Disease and cell

lines from JNLPBA.

The MTM-CW model performs consistently better than the

neural network model (Habibi et al., 2017) on all four entity types.

It also outperforms the state-of-the-art systems (Benchmark in

Fig. 4) on three entity types except for cell lines. These results further

confirm that the multi-task neural network model achieves a signifi-

cantly better performance compared with state-of-art systems and

other neural network models for BioNER.

5.3 Integration of biomedical entity dictionaries
A biomedical entity dictionary is a manually-curated list of entity

names that belong to a specific entity type. Traditional BioNER sys-

tems make heavy use of these dictionaries in addition to other data.

To study whether our approach can benefit from the use of entity

dictionaries, we retrieve biomedical entity dictionaries for three en-

tity types (i.e. genes/proteins, chemicals and diseases) from the

Comparative Toxicogenomics Database (CTD) (Davis et al., 2017).

We use these entity dictionaries in a neural network model in two

different ways: (i) dictionary post-processing to match the ‘O’-

labeled entities with the dictionary to reduce the false negative rate,

or (ii) dictionary feature to provide additional information about

(a) (b) (c)

Fig. 3. Three multi-task learning neural network models. The empty circles denote the character embeddings. The empty round rectangles denote the character-

level BiLSTM. The shaded circles denote the word-level embeddings. The shaded round rectangles denote the word-level BiLSTM. The squares denote the CRF

layer. (a) MTM-C: multi-task learning neural network with a shared character layer and a task-specific word layer, (b) MTM-W: multi-task learning neural network

with a task-specific character layer and a shared word layer, (c) MTM-CW: multi-task learning neural network with shared character and word layers

Cross-type biomedical named entity recognition with deep multi-task learning 1749
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words into the word-level BiLSTM. This dictionary feature indicates

whether a word sequence consisting of a word and its neighbors is

present in a dictionary. We consider word sequences of up to six

words, which adds 21 additional dimensions for each entity type.

We compare the performance of MTM-CW with and without add-

ing dictionaries (Table 4).

We observe no significant performance improvement when bio-

medical entity dictionaries are included into the MTM-CW model at

the pre-processing stage. Moreover, including dictionaries at the

post-processing stage even hurts the performance. This is presum-

ably due to a higher false positive rate introduced by the diction-

aries, when some words share the surface name with dictionary

entities but do not share the same meaning or entity types. These

results indicate that our multi-task model, by sharing information at

both the character and word levels, is able to learn effective data

representations and generalize to new data without the use of exter-

nal lexicon resources.

5.4 Comparison on training time
All of the neural network models are trained on one GeForce GTX

1080 GPU. We compare the average training time (seconds per sen-

tence) of our method on the five main datasets with the baseline

neural models in Table 2. Since our multi-task model requires train-

ing on the five datasets together, we calculate and compare the aver-

age training time on all datasets instead of on each individual one.

We find that our single-task neural model STM is the most efficient

among the neural models and almost halves the training time

(0.71 s/sent.) when compared to Lample et al.; Habibi et al. (1.59 s/

Table 2. Performance and average training time of the baseline neural network models and the proposed MTM-CW model

Dataset Benchmark Crichton et al. Lample et al. Habibi et al. Ma and Hovy STM MTM-CW

BC2GM (Exact) Precision – – 81.5760.26* 79.0960.63** 81.1160.33* 82.1060.04

Recall – – 79.4860.27 77.8760.53** 78.9160.40** 79.4260.01

F1 – 73.17** 80.5160.09 78.4860.31** 80.0060.15* 80.7460.04

BC2GM (Alternative) Precision 88.48 – 87.2760.41** 83.5060.37** 88.2160.28* 89.4560.32

Recall 85.97** – 87.8460.19 87.1360.17* 87.4360.18* 88.6760.37

F1 87.21** 84.41** 87.5560.10* 85.2760.11** 87.8260.30* 89.0660.32

BC4CHEMD Precision 88.73** – 89.6860.22* 90.8360.53 90.5360.72* 91.3060.08

Recall 87.41 – 85.8760.16* 83.1960.20** 87.0460.50 87.5360.11

F1 88.06* 83.02** 87.7460.05** 86.8460.07** 88.7560.20 89.3760.07

BC5CDR Precision 89.21 – 87.6060.08** 89.1660.03 88.8460.08 89.1060.11

Recall 84.45** – 86.2560.07** 84.2860.02** 85.1660.05** 88.4760.04

F1 86.76** 83.90** 86.9260.06** 86.6560.06** 86.9660.00** 88.7860.12

NCBI-Disease Precision 85.10 – 86.1160.33 86.8960.34 84.9560.41 85.8660.90

Recall 80.80** – 85.4960.93 78.7560.16** 82.9260.31* 86.4260.44

F1 82.90** 80.37** 85.8060.16 82.6260.29** 83.9260.18* 86.1460.31

JNLPBA Precision 69.42** – 71.3560.05 70.2860.03* 69.6060.07** 70.9160.02

Recall 75.99 – 75.7460.07 75.2660.41 74.9560.24* 76.3460.23

F1 72.55** 70.09** 73.4860.03 72.6860.21* 72.1760.13** 73.5260.03

Training time (s/sent.) – – 1.59 0.95 0.71 0.75

Note: Bold: best scores,

*: significantly worse than the MTM-CW model (P � 0:05),

**: significantly worse than the MTM-CW model (P � 0:01).

The details of dataset benchmark systems and evaluation methods are described in Section 4.1 and 4.2, respectively.

Table 3. F1 scores of three multi-task models proposed in this paper

Dataset MTM-C MTM-W MTM-CW

BC2GM 77.8060.30** 79.4260.08** 80.7460.04

BC4CHEMD 88.1660.07* 88.4960.03* 89.3760.07

BC5CDR 86.0560.26** 88.2660.05* 88.7860.12

NCBI-Disease 82.9460.31** 84.8160.14 86.1460.31

JNLPBA 71.7960.41** 73.2160.16 73.5260.03

Note: Bold: best scores,

*: significantly worse than the MTM-CW model (P � 0:05),

**: significantly worse than the MTM-CW model (P � 0:01).

Fig. 4. Macro-averaged F1 scores of the proposed multi-task model compared

with benchmark on different entities. Benchmark refers to the performance of

state-of-the-art BioNER systems
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sent.). Compared to the single-task model STM, our multi-task

model MTM-CW achieves 8.0% overall F1 improvements with only

5.1% additional training time. The reason that MTM-CW is slightly

slower compared with STM is that it takes a few more epochs for

MTM-CW to reach convergence when trained on five datasets

together.

5.5 Case study
To investigate the major advantages of the multi-task models com-

pared with the single task models, we examine some sentences with

predicted labels (Table 5). The true labels and the predicted labels of

each model are underlined in a sentence.

One major challenge of BioNER is to recognize a long entity

with integrity. In Case 1, the true gene entity is ‘endo-beta-1, 4-glu-

canase-encoding genes’. The single-task model tends to break this

whole entity into two parts separated by a comma, while the multi-

task model can detect this gene entity as a whole. This result could

due to the co-training of multiple datasets containing long entity

training examples. Another challenge is to detect the correct boun-

daries of biomedical entities. In Case 2, the correct protein entity is

‘SMase’ in the phrase ‘SMase—sphingomyelin complex structure’.

The single-task models recognize the whole phrase as a protein en-

tity. Our multi-task model is able to detect the correct right

boundary of the protein entity, probably also due to seeing more

examples from other datasets which may contain ‘sphingomyelin’ as

a non-chemical entity. In Case 3, the adjective words ‘human’ and

‘complement factor’ in front of ‘H deficiency’ should be included as

part of the true entity. The single-task models missed the adjective

words while the multi-task model is able to detect the correct right

boundary of the disease entity. In summary, the multi-task model

works better at dealing with two critical challenges for BioNER: (i)

recognizing long entities with integrity and (ii) detecting the correct

left and right boundaries of biomedical entities. Both improvements

come from collectively training multiple datasets with different en-

tity types and sharing useful information between datasets.

6 Conclusion

We proposed a neural multi-task learning approach for biomedical

named entity recognition. The proposed approach, despite being

simple and not requiring manual feature engineering, outperformed

state-of-the-art systems and several strong neural network models

on benchmark BioNER datasets. We also showed through detailed

analysis that the strong performance is achieved by the multi-task

model with only marginally added training time, and confirmed that

the large performance gains of our approach mainly come from

Table 4. F1 scores of the proposed multi-task model using the CTD entity dictionary

Dataset MTM-CW þDictionary Feature þDictionary Post-process

BC2GM 80.7460.04 80.7060.06 61.5660.07**

BC4CHEMD 89.3760.07 88.9260.10 83.8360.09**

BC5CDR 88.7860.12 88.8260.17 87.9060.06**

NCBI-Disease 86.1460.31 85.4860.44 83.8060.06*

JNLPBA 73.5260.03 73.3560.30 63.6260.08**

Note: Bold: best scores,

*: significantly worse than the MTM-CW model (P � 0:05),

**: significantly worse than the MTM-CW model (P � 0:01).

Table 5. Case study of the prediction results from different models

Genes/Proteins

Case 1 True label This fragment contains two complete endo—beta—1, 4—glucanase—encoding genes, designated celCCC and celCCG.

Habibi This fragment contains two complete endo—beta—1, 4—glucanase—encoding genes, designated celCCC and celCCG.

STM This fragment contains two complete endo—beta—1, 4—glucanase—encoding genes, designated celCCC and celCCG.

MTM-CW This fragment contains two complete endo—beta—1, 4—glucanase—encoding genes, designated celCCC and celCCG.

Error Entity integrity: break a long entity into parts and lose the entity integrity.

Case 2 True label A model for the SMase—sphingomyelin complex structure was built to investigate how the SMase specifically recognizes

its substrate.

Habibi A model for the SMase—sphingomyelin complex structure was built to investigate how the SMase specifically recognizes

its substrate.

STM A model for the SMase—sphingomyelin complex structure was built to investigate how the SMase specifically recognizes

its substrate.

MTM-CW A model for the SMase—sphingomyelin complex structure was built to investigate how the SMase specifically recognizes

its substrate.

Error Right boundary error: false detection of non-entity tokens as part of the true entity.

Diseases

Case 3 True label . . . human complement factor H deficiency associated with hemolytic uremic syndrome.

Habibi . . .human complement factor H deficiency associated with hemolytic uremic syndrome.

STM . . . human complement factor H deficiency associated with hemolytic uremic syndrome.

MTM-CW . . . human complement factor H deficiency associated with hemolytic uremic syndrome.

Error Left boundary error: fail to detect the correct left boundary of the true entity due to some adjective words in front.

Note: The true labels and the predicted labels of each model are underlined in the sentence. A brief summary of the error type is also included at the end of

each example.
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sharing character- and word-level information between biomedical

entity types.

Lastly, we highlight several future directions to improve the

multi-task BioNER model. First, combining single-task and multi-

task models might be a fruitful direction. Second, by further resolv-

ing the entity boundary and type conflict problem, we could build a

unified system for recognizing multiple types of biomedical entities

with high performance and efficiency.

Conflict of Interest: none declared.
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