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Abstract

In many scientific fields, large language mod-
els (LLMs) have revolutionized the way text
and other modalities of data (e.g., molecules
and proteins) are handled, achieving supe-
rior performance in various applications and
augmenting the scientific discovery process.
Nevertheless, previous surveys on scientific
LLMs often concentrate on one or two fields
or a single modality. In this paper, we aim
to provide a more holistic view of the re-
search landscape by unveiling cross-field and
cross-modal connections between scientific
LLMs regarding their architectures and pre-
training techniques. To this end, we compre-
hensively survey over 260 scientific LLMs,
discuss their commonalities and differences,
as well as summarize pre-training datasets
and evaluation tasks for each field and modal-
ity. Moreover, we investigate how LLMs
have been deployed to benefit scientific discov-
ery. Resources related to this survey are avail-
able at https://github.com/yuzhimanhua/
Awesome-Scientific-Language-Models.

1 Introduction

The emergence of large language models (LLMs)
(Zhao et al., 2023c) brings a new paradigm to nat-
ural language processing (NLP) by replacing spe-
cialized models designed for each task with unified
models that are reasonably effective for a wide
spectrum of problems. In the scientific domain,
such a paradigm not only reshapes people’s strate-
gies to handle tasks related to natural language (e.g.,
scientific papers, medical records, and climate re-
ports) but also inspires analogous ideas to deal with
other types of data (e.g., molecules, proteins, tables,
and metadata). In addition to understanding exist-
ing scientific data, LLMs have shown their poten-
tial to accelerate scientific discovery (Wang et al.,
2023c; Zhang et al., 2023e; Wang et al., 2024d)
through generation, planning, etc.

∗ Equal contribution

Given the broad and profound impact of LLMs
in various scientific fields across diverse modalities,
it becomes necessary to comprehensively review
related work in this direction. However, existing
scientific LLM surveys typically focus on either
one or two fields (e.g., biomedicine (Wang et al.,
2023a; He et al., 2024b; Pei et al., 2024; Zhang
et al., 2024d) and chemistry (Xia et al., 2023; Pei
et al., 2024; Zhang et al., 2024d)) or one modality
(e.g., text (Ho et al., 2024)) only. In fact, if we take
a holistic view of the research landscape, we can
observe similar and interrelated techniques used to
develop LLMs for different fields and modalities.

Figure 1 depicts three major types of scien-
tific LLM pre-training strategies (i.e., COLUMNS
1 to 3), for each of which we give 4 examples
(i.e., TYPES A to D). In COLUMN 1, follow-
ing BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019), existing studies use masked lan-
guage modeling (MLM) to pre-train encoder lan-
guage models. Here, the input can be naturally
sequential (e.g., papers in each field; protein, DNA,
and RNA sequences in the FASTA format (Lip-
man and Pearson, 1985)) or artificially linearized
(e.g., molecules in the SMILES format (Weininger,
1988); sequences of venue, author, and reference
nodes in citation graphs). In COLUMN 2, inspired
by GPT (Brown et al., 2020) and LLaMA (Touvron
et al., 2023a), previous studies adopt next token
prediction to pre-train (encoder-)decoder language
models, some of which further adopt instruction
tuning and preference optimization (Ouyang et al.,
2022). Other than plain text input (e.g., question-
answer pairs from knowledge bases or exams), we
see more ways to sequentialize complex scientific
data, such as flattening table cells and using par-
ticle coordinates to describe crystals. Even for
images, there are studies in both mathematics (Gao
et al., 2023) and biomedicine (Li et al., 2023a)
that exploit a vision encoder to project an image
onto several visual tokens and prepend them to text
tokens as linearized LLM input. In COLUMN 3,
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Figure 1: Three major types of scientific LLM pre-training techniques. (COLUMN 1): Pre-training encoder
LLMs with sequentialized scientific data (e.g., text, academic graphs, molecules, biological sequences) via masked
language modeling. (COLUMN 2): Pre-training (encoder-)decoder LLMs with sequentialized scientific data (e.g.,
text, tables, crystals, images) via next token prediction (possibly with instruction tuning). (COLUMN 3): Mapping
text and relevant sequences/graphs/images closer in the latent space via contrastive learning.

following DPR (Karpukhin et al., 2020) and CLIP
(Radford et al., 2021), two encoders are pre-trained
to map relevant data pairs closer in the latent space
via contrastive learning. When both modalities
are sequential (e.g., text-text or text-protein), the
model is built upon two LLM encoders. When
we prefer to keep the non-sequential nature of one
modality (e.g., molecular graphs (Edwards et al.,
2021), chest X-rays (Zhang et al., 2022), and aerial
views (Yan et al., 2024)), the corresponding graph
or image encoder can be employed. To summa-
rize, a cross-field, cross-modal survey will more
accurately draw the connections between different
scientific LLMs, demonstrate their commonalities,
and potentially guide their future designs.

Contributions. In this paper, motivated by the
discussions above, we systematically survey over
260 scientific LLMs encompassing various fields

(e.g., general science, mathematics, physics, chem-
istry, materials science, biology, medicine, and geo-
science), modalities (e.g., language, graph, vision,
table, molecule, protein, genome, and climate time
series), and sizes (from ∼100M to ∼100B parame-
ters). For each field/modality, we investigate com-
monly adopted pre-training datasets, model archi-
tectures, and evaluation tasks of scientific LLMs.
Following our motivation, when we discuss model
architectures in detail, we link them back to Fig-
ure 1 to build cross-field cross-modal connections.
Moreover, we provide a structured summary of
these scientific LLMs in Table A1-Table A6 (Ap-
pendix A). Furthermore, for different fields, we
introduce how LLMs have been deployed to benefit
science by augmenting different aspects and stages
of the scientific discovery process, such as hypothe-
sis generation, theorem proving, experiment design,
drug discovery, and weather forecasting.



2 LLMs in General Science (Table A1)

2.1 Language
The most commonly used pre-training corpora for
scientific LLMs are research papers from biblio-
graphic databases, such as AMiner (Tang et al.,
2008), Microsoft Academic Graph (MAG) (Sinha
et al., 2015), and Semantic Scholar (Ammar et al.,
2018). Some of these sources (e.g., S2ORC (Lo
et al., 2020)) contain full-text information of pa-
pers, while the others have titles and abstracts only.

The evolution of scientific LLMs bears simi-
larity to that of general-domain LLMs. Specif-
ically, pioneering models utilize paper text in a
self-supervised manner during pre-training, aiming
to acquire scientific knowledge from large-scale
unlabeled corpora. For example, masked language
modeling (MLM) is the default pre-training task
for scientific LLMs with a BERT backbone (TYPE
1.A in Figure 1, e.g., SciBERT (Beltagy et al.,
2019)); next token prediction is widely used for
GPT-based scientific LLMs (TYPE 2.A in Figure 1,
e.g., SciGPT (Luu et al., 2021)). More recently,
inspired by the fact that LLMs can be trained to
follow natural language instructions (Wei et al.,
2022a; Ouyang et al., 2022), researchers have put
more effort into tuning LLMs with instructions to
solve complex scientific problems (TYPE 2.A, e.g.,
Galactica (Taylor et al., 2022) and SciGLM (Zhang
et al., 2024a)). The instruction tuning data are often
derived from datasets for downstream tasks, such
as exam question answering (Welbl et al., 2017),
and further filtered or augmented by humans or
existing LLMs (e.g., GPT-4 (Achiam et al., 2023)).

General scientific LLMs are usually evaluated
on common NLP tasks, such as named entity
recognition (NER), relation extraction (RE) (Luan
et al., 2018), question answering (QA) (Wang et al.,
2024f), and classification (Cohan et al., 2019).

2.2 Language + Graph
Beyond plain text, scientific papers are associated
with rich metadata including venues, authors, and
references (Zhang et al., 2023g). Such metadata
connect papers into a graph that complements text
signals for characterizing paper semantics. To ex-
ploit metadata, some studies (TYPE 1.B, e.g., OAG-
BERT (Liu et al., 2022b)) concatenate paper text
with venues/authors as input and perform MLM
on both text and metadata; others (TYPE 3.A, e.g.,
SPECTER (Cohan et al., 2020)) take citation links
as supervision and train LLMs to encode linked
papers closer in the embedding space. Recent ap-
proaches further modify the Transformer architec-

ture in LLMs with Adapters (Singh et al., 2023),
GNN-nested Transformers (Jin et al., 2023b), and
Mixture-of-Experts Transformers (Zhang et al.,
2023f) to better capture graph signals.

Graph-aware scientific LLMs are often evalu-
ated on tasks regarding the relation between two
text units (e.g., paper-paper or query-paper), in-
cluding link prediction, retrieval, recommendation,
and author name disambiguation. SciDocs (Cohan
et al., 2020) and SciRepEval (Singh et al., 2023)
are widely adopted benchmark datasets.

2.3 Applications in Scientific Discovery

Performant scientific LLMs can work alongside
researchers throughout the entire scientific discov-
ery process. Leaving field-specific applications for
later sections, here we underscore LLMs’ general
usefulness in brainstorming and evaluation: Lahav
et al. (2022) integrate LLMs into a search engine
for the discovery of scientific challenges and di-
rections; Wang et al. (2023e), Yang et al. (2024d),
Baek et al. (2024), Gu and Krenn (2024), and Si
et al. (2024) leverage LLMs to generate novel scien-
tific ideas, directions, and hypotheses on the basis
of prior literature and existing knowledge; Zhang
et al. (2023h) rely on LLMs to find expert reviewers
for each submission; Liu and Shah (2023), Liang
et al. (2024c), and D’Arcy et al. (2024) explore
the capacity of GPT-4 to provide useful feedback
on research papers to facilitate automatic review
generation; Liang et al. (2024b,a) also observe the
increasing use of LLMs in writing scientific papers
and conference peer reviews.

3 LLMs in Mathematics (Table A2)

3.1 Language

The pre-training text corpora for mathematics
LLMs can be categorized into two classes: (1)
multiple-choice QA, the representative datasets
of which include MathQA (Amini et al., 2019),
Ape210K (Zhao et al., 2020), and Math23K (Wang
et al., 2017); as well as (2) generative QA, the repre-
sentative datasets of which include GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021b), and
MetaMathQA (Yu et al., 2024c).

Similarly to general science LLMs, the backbone
model of pioneering mathematics LLMs is BERT
(TYPE 1.A, e.g., GenBERT (Geva et al., 2020) and
MathBERT (Shen et al., 2021)), and these mod-
els are mostly trained via MLM. For GPT-based
mathematics LLMs (TYPE 2.A, e.g., GSM8K-GPT
(Cobbe et al., 2021) and NaturalProver (Welleck
et al., 2022)), next token prediction and instruc-



tion tuning are major pre-training tasks to generate
mathematical proofs and reasoning processes. The
most recent models (TYPE 2.A, e.g., Rho-Math
(Lin et al., 2024b) and MAmmoTH2 (Yue et al.,
2024c)) are based on LLaMA and are trained to fol-
low natural language instructions. However, when
an enormous pre-training corpus is available (e.g.,
mathematical web pages and code), next token
prediction is still favored as the mere pre-training
task (Azerbayev et al., 2024; Lin et al., 2024b) or
the companion task (Shao et al., 2024; Ying et al.,
2024) to build base models.

QA and math world problems (MWP) have been
the most common evaluation tasks for mathematics
LLMs. In addition, quantitative reasoning contains
more difficult problems, as the model has to pro-
vide a complete and self-contained solution with-
out relying on external tools (Shao et al., 2024; Lin
et al., 2024b). We see a dominance of use from
GSM8K and MATH for QA, and from MathQA
and Math23K for MWP. For quantitative reason-
ing, MMLU-STEM (Hendrycks et al., 2021a) and
Big-Bench Hard (Suzgun et al., 2023) are the most
widely adopted.

3.2 Language + Vision
Geometry is one of the most important branches of
mathematics, and it expresses the settings jointly
in text and diagrams. As such, it is mandatory to
involve the vision modality for geometry LLMs.
The most commonly used pre-training datasets for
geometry LLMs include Geometry3K (Lu et al.,
2021) and GeoQA (Chen et al., 2021), both of
which contain multiple-choice geometry problems.

The key to incorporating the vision modality
into LLMs is to encode the images and obtain lin-
earized visual representations. Specifically, Inter-
GPS (Lu et al., 2021) (TYPE 2.D) uses RetinaNet
(Lin et al., 2017) to transform images into a set of
relationships and then applies BART (Lewis et al.,
2020a) to produce the solution; G-LLaVA (Gao
et al., 2023) (TYPE 2.D) encodes visual input via a
pre-trained vision Transformer (ViT), concatenates
visual embeddings with textual embeddings, and
then feeds the concatenation into LLaMA-2 (Tou-
vron et al., 2023b). These models are by default
pre-trained via sequence-to-sequence tasks, where
the problem is the input, and the ground-truth an-
swer with optional rationale is the output. Auxil-
iary loss such as masked image modeling, image
construction, or text-image matching, is optionally
added for better visual modeling.

Geometry LLMs are evaluated through geometry
problem solving, where the model is asked to select

the correct answer given the diagram and its cap-
tion, the question, and answer options. Renowned
evaluation datasets include Geometry3K (Lu et al.,
2021), GEOS (Seo et al., 2015), and MathVista (Lu
et al., 2024).

3.3 Table
A large proportion of math knowledge is stored in
the form of tabular data. For the “Table” modal-
ity, notable resources for pre-training include Wik-
iTableQuestions (Pasupat and Liang, 2015), Wik-
iSQL (Zhong et al., 2017), and WDC Web Table
(Lehmberg et al., 2016).

The challenge in tables is similar to that in di-
agrams, namely to obtain linearized table repre-
sentations. In most cases, tables are squeezed into
linear text sequences as part of the context and are
prepended with the question text as the model input.
As one of the first works in this line of research,
TAPAS (Herzig et al., 2020) (TYPE 1.A) adopts the
MLM objective to predict the masked token in both
textual and tabular contexts. Recent developments
(Li et al., 2024b; Zhang et al., 2024f) resemble the
design of TableLlama (Zhang et al., 2024e) (TYPE
2.B), with LLaMA-2 as the backbone and instruc-
tion tuning as the pre-training task.

Table LLMs are validated through table QA,
where the model is asked to produce the correct
answer given the table structure, data values, and a
question text. Most existing studies have been eval-
uated on the WikiTableQuestions and WikiSQL
datasets. TableInstruct (Zhang et al., 2024e) is
the most recently developed comprehensive bench-
mark integrating 14 datasets across 11 tasks.

3.4 Applications in Scientific Discovery
Mathematics LLMs have great potential to assist
humans in offering potential solutions. For in-
stance, AlphaGeometry (Trinh et al., 2024) com-
bines an LLM with a symbolic deduction engine,
where the LLM generates useful constructs and
the symbolic engine applies formal logic to find
solutions. AlphaGeometry solves 25 out of 30 clas-
sical geometry problems adapted from the Interna-
tional Mathematical Olympiad. Sinha et al. (2024)
extend AlphaGeometry by adding Wu’s method
(Chou, 1988), further solving 27 out of 30, surpass-
ing human gold medalists. FunSearch (Romera-
Paredes et al., 2024) integrates LLM with program
search. One notable achievement of FunSearch
is its ability to find a new solution to the cap set
problem in combinatorial optimization. The so-
lutions generated can be faster and more efficient
than those devised by human experts. In Li et al.



(2024a), LLMs iteratively propose and critique sta-
tistical models by leveraging in-context learning
and chain-of-thought reasoning (Wei et al., 2022b).

4 LLMs in Physics (Table A3)

4.1 Language
As a derivative of BERT, astroBERT (Grezes et al.,
2024) (TYPE 1.A) is further pre-trained using
astronomy-related papers via MLM and next sen-
tence prediction. It is evaluated on the NER
task. Likewise, AstroLLaMA (Nguyen et al.,
2023b) (TYPE 2.A) fine-tunes LLaMA-2 using
over 300,000 astronomy abstracts from arXiv. It
is evaluated on paper generation and recommen-
dation tasks. AstroLLaMA-chat (Perkowski et al.,
2024) (TYPE 2.A) is the chat version of AstroL-
LaMA. It is continually trained on a GPT-4 gener-
ated domain-specific dialogue dataset. PhysBERT
(Hellert et al., 2024) (TYPE 1.A) is the first physics-
specific model for sentence embedding trained on
a curated corpus of physics literature based on 1.2
million physics papers on arXiv. It is evaluated on
physics-tailored tasks, such as information retrieval,
classification, and semantic similarity estimation.

4.2 Applications in Scientific Discovery
Transformer-based physics LLMs can potentially
assist humans in solving differential equations and
designing experiments. For instance, Cai et al.
(2024) apply Transformer to predict the integer
coefficients in the scattering amplitudes of Planar
N = 4 Super Yang-Mills theory; RydbergGPT
(Fitzek et al., 2024) uses Transformer to learn the
distribution of qubit measurement outcomes that
describe an array of interacting Rydberg atoms;
Arlt et al. (2024) present an initial trial that applies
a code-generating LLM to synthesize experimental
blueprints for a whole class of quantum systems in
the form of Python code.

5 LLMs in Chemistry and Materials
Science (Table A4)

5.1 Language
LLM pre-training corpora in chemistry and ma-
terials science typically come from research pa-
pers and databases (e.g., Materials Project (Jain
et al., 2013)). Besides, recent works adopt domain-
specific instruction tuning datasets (e.g., Mol-
Instructions (Fang et al., 2024a) and SMolInstruct
(Yu et al., 2024a)) derived from PubChem (Kim
et al., 2019), MoleculeNet (Wu et al., 2018), etc.

Early studies on chemistry LLMs mostly adopt
a moderate-sized encoder-only architecture pre-

trained with MLM (TYPE 1.A, e.g., ChemBERT
(Guo et al., 2022), MatSciBERT (Gupta et al.,
2022), and BatteryBERT (Huang and Cole, 2022)).
These models are usually evaluated on downstream
tasks including reaction role labeling (Guo et al.,
2022) and abstract classification (Gupta et al.,
2022). Recently, researchers have focused more on
large-scale decoder-only LLMs trained with next
token prediction and instruction tuning (TYPE 2.A).
Examples include ChemDFM (Zhao et al., 2024),
ChemLLM (Zhang et al., 2024b), and LlaSMol
(Yu et al., 2024a). Given the desired generalization
capability of such models, they are evaluated on a
diverse set of tasks such as name conversion (Kim
et al., 2019), reaction prediction (Jin et al., 2017),
retrosynthesis (Schneider et al., 2016), text-based
molecule design (Edwards et al., 2022), and crystal
generation (Antunes et al., 2023; Flam-Shepherd
and Aspuru-Guzik, 2023; Gruver et al., 2024).

5.2 Language + Graph
Graphs are appropriate data structures for character-
izing molecules (Jin et al., 2023a). Popular datasets
containing molecular graphs include ChEBI-20
(Edwards et al., 2021, 2022), ZINC (Sterling and
Irwin, 2015), and PCDes (Zeng et al., 2022).

In some scenarios, molecular graphs appear si-
multaneously with text information, thus existing
works have explored how to encode both effectively.
The first type of such models adopts a GNN as the
graph encoder and an LLM as the text encoder. The
two modalities are connected through contrastive
learning (Liu et al., 2023d) (TYPE 3.C). For ex-
ample, Text2Mol (Edwards et al., 2021) uses GCN
(Kipf and Welling, 2017) and SciBERT to encode
a molecule and its corresponding natural language
description, respectively, for text-to-molecule re-
trieval. The second type of such models utilizes
an LLM to encode text and graphs simultaneously
(Zeng et al., 2022). Graphs can be either linearized
to SMILES strings (Edwards et al., 2022) (TYPE
2.C) or projected onto virtual tokens with graph en-
coders (Zhao et al., 2023a; Liu et al., 2023e) (TYPE
2.D). For instance, 3D-MoLM (Li et al., 2024c)
uses a 3-dimensional molecular encoder to repre-
sent molecules as tokens and feeds them together
with instructions into LLaMA-2 for molecule-to-
text retrieval and molecule captioning.

5.3 Language + Vision
Complementing text and graph modalities, molecu-
lar images form the vision modality in chemistry.
Existing works adopt a similar philosophy to BLIP-
2 (Li et al., 2023b), which represents each image



as tokens and feeds them into an LLM (TYPE 2.D).
For example, GIT-Mol (Liu et al., 2024a) projects
all modalities, including graphs and images, into
the latent text space and conducts encoding and
decoding using T5 (Raffel et al., 2020).

5.4 Molecule
Different from subsection 5.2, this subsection intro-
duces models dealing with molecules without asso-
ciated text information. That being said, compara-
ble approaches inspired by LLMs are utilized to de-
velop molecular language models (Flam-Shepherd
et al., 2022). To be specific, most studies adopt
SMILES or SELFIES (Krenn et al., 2020) strings as
the sequential representation of molecules. Similar
to the trend in the “Language” modality, pioneer-
ing molecular LLMs focus on representation learn-
ing with bidirectional Transformer encoders (TYPE
1.C, e.g., SMILES-BERT (Wang et al., 2019) and
MoLFormer (Ross et al., 2022)). For instance,
ChemBERTa (Chithrananda et al., 2020) adopts
the architecture and pre-training strategy similar
to those of RoBERTa (Liu et al., 2019). These
models exhibit extraordinary abilities in molecular
understanding tasks such as molecular property pre-
diction (e.g., toxicity classification (Wu et al., 2018)
and atomization energy regression (Ramakrishnan
et al., 2014)) as well as virtual screening (Riniker
and Landrum, 2013). Later works explore the idea
of representing molecules in an autoregressive fash-
ion (TYPE 2.C, e.g., BARTSmiles (Chilingaryan
et al., 2024) and ChemGPT (Frey et al., 2023)). For
instance, T5Chem (Lu and Zhang, 2022) adopts
the T5 backbone and a sequence-to-sequence pre-
training objective. These models are evaluated in
generative tasks that include molecule generation
(Gaulton et al., 2017), reaction prediction, and ret-
rosynthesis. Besides linearizing molecules, there
are studies modifying the Transformer architecture
to admit molecular graphs, such as MAT (Maziarka
et al., 2020) and R-MAT (Maziarka et al., 2024).

5.5 Applications in Scientific Discovery
Previous studies have shown that LLMs facilitate
autonomous chemical research. For example, Bran
et al. (2024) present a chemistry LLM agent, Chem-
Crow, that can integrate expert-designed tools for
organic synthesis, drug discovery, and materials de-
sign; Zheng et al. (2023a) demonstrate that LLMs
can perform knowledge synthesis from the scien-
tific literature, knowledge inference from data, and
interpretable explanation generation in chemistry;
Boiko et al. (2023) develop an LLM-empowered
intelligence system, Coscientist, that can design,

plan, and perform chemical research. Moreover,
LLMs accomplish complex tasks in chemistry, such
as drug and catalyst design and molecular discov-
ery, purely from instructions (White, 2023). For
instance, Ramos et al. (2023) study catalyst and
molecule design with in-context learning, remov-
ing the requirement for traditional training or simu-
lation processes; ChatDrug (Liu et al., 2024b) ex-
plores drug editing using LLMs with a prompt mod-
ule, a domain feedback module, and a conversation
module; Jablonka et al. (2024) find that fine-tuned
LLMs perform comparably to, or even better than,
conventional techniques for many chemistry appli-
cations, spanning from the properties of molecules
and materials to the yield of chemical reactions;
DrugAssist (Ye et al., 2023a) serves as an LLM-
based interactive model for molecule optimization
through human-machine dialogue; Sprueill et al.
(2023, 2024) use LLMs as agents to search for ef-
fective catalysts through Monte Carlo Tree Search
and the feedback from an atomistic neural network
model; Wang et al. (2024b) re-engineer crossover
and mutation operations for molecular discovery
using LLMs trained on extensive chemical datasets.
Meanwhile, benchmarking studies by Mirza et al.
(2024) demonstrate that although LLMs achieve
superhuman proficiency in many chemical tasks,
further research is critical to enhancing their safety
and utility in chemical sciences.

6 LLMs in Biology and Medicine
(Table A5)

6.1 Language

Besides research articles (e.g., titles/abstracts from
PubMed (Lu, 2011) and full text from PMC (Beck
and Sequeira, 2003)), pre-training corpora for
biomedical LLMs include electronic health records
(e.g., MIMIC-III (Johnson et al., 2016), MIMIC-
IV (Johnson et al., 2023)), knowledge bases (e.g.,
UMLS (Bodenreider, 2004)), and health-related so-
cial media posts (e.g., COVID-19 tweets (Müller
et al., 2023)). Recent studies further collect su-
pervised fine-tuning and preference optimization
datasets from medical exam questions, knowledge
graphs, and doctor-patient dialogues. Examples in-
clude ChiMed (Ye et al., 2023b), MedInstruct-52k
(Zhang et al., 2023d), and BiMed1.3M (Acikgoz
et al., 2024), many of which have non-English com-
ponents (e.g., Chinese and Arabic).

The watershed moment in the evolution biomed-
ical LLMs is still the emergence of billion-
parameter architectures and instruction tuning. Be-
fore that, a wide variety of moderate-sized back-



bones are explored, including both encoder-based
(TYPE 1.A, e.g., BioBERT (Lee et al., 2020), Bio-
ELECTRA (Ozyurt, 2020), BioRoBERTa (Lewis
et al., 2020b), BioALBERT (Naseem et al., 2022),
and Clinical-Longformer (Li et al., 2022a)) and
(encoder-)decoder-based ones (TYPE 2.A, e.g., Sci-
Five (Phan et al., 2021), BioBART (Yuan et al.,
2022a), and BioGPT (Luo et al., 2022)). Evalu-
ation tasks for these models range from biomedi-
cal NER, RE, sentence similarity estimation, doc-
ument classification, and QA (i.e., the BLURB
benchmark (Gu et al., 2021)) to natural language
inference (NLI) (Romanov and Shivade, 2018)
and entity linking (Doğan et al., 2014). After the
watershed, the trend becomes instruction-tuning
billion-parameter LLMs (TYPE 2.A, e.g., Med-
PaLM (Singhal et al., 2023a), MedAlpaca (Han
et al., 2023), and BioMistral (Labrak et al., 2024)).
Accordingly, evaluation tasks now include single-
round QA (Jin et al., 2021; Pal et al., 2022) and
multi-round dialogue (Wang et al., 2024g). Mean-
while, there are studies proposing a Bi-Encoder
architecture (TYPE 3.A, e.g., Jin et al. (2023c) and
Xu et al. (2024)) that specifically targets biomed-
ical retrieval tasks, the benchmarks of which are
NFCorpus (Boteva et al., 2016), TREC-COVID
(Voorhees et al., 2021), etc.

6.2 Language + Graph
Biomedical ontologies capture rich types of rela-
tions between entities. Analogously, citation links
characterize connections between biomedical pa-
pers. Intuitively, jointly leveraging text and such
graph information paves the way for multi-hop rea-
soning in QA. For instance, Yasunaga et al. (2022a)
propose to use an LLM and a GNN to encode text
and ontology signals, respectively, and deeply fuse
them (TYPE 3.C); Yasunaga et al. (2022b) concate-
nate text segments from two linked papers together
and feed the sequence into an LLM for pre-training,
which is essentially appending a metadata neighbor
(i.e., reference) as context for MLM (TYPE 1.B).
Both approaches demonstrate significant improve-
ment in QA tasks that require complex reasoning.

6.3 Language + Vision
Biomedical text-image pairs typically come from
two sources: (1) medical reports, such as chest
X-rays (e.g., MIMIC-CXR (Johnson et al., 2019))
and pathology reports (Huang et al., 2023); as well
as (2) figure-caption pairs extracted from biomed-
ical papers (e.g., ROCO (Pelka et al., 2018) and
MedICaT (Subramanian et al., 2020)).

Most biomedical vision-language models exploit

the CLIP architecture (Radford et al., 2021), where
a text encoder and an image encoder are jointly
trained to map the paired text and image closer
via contrastive learning (TYPE 3.D). The choice
of the text encoder evolves from BERT (Zhang
et al., 2022) and GPT-2 (Huang et al., 2023) to
LLaMA (Wu et al., 2023) and LLaMA-2 (Liu et al.,
2023b), while the image encoder evolves from
ResNet (Huang et al., 2021) to ViT (Zhang et al.,
2023c) and Swin Transformer (Thawkar et al.,
2024). MLM, masked image modeling, and text-
text/image-image contrastive learning (i.e., by cre-
ating augmented views within the language/vision
modality) are sometimes adopted as auxiliary pre-
training tasks. Besides CLIP, other general-domain
vision-language architectures, such as LLaVA (Li
et al., 2023a), PaLM-E (Tu et al., 2024), and Gem-
ini (Saab et al., 2024), have been explored. For
instance, LLaVA-Med (TYPE 2.D) encodes images
onto several visual tokens and prepends them to
text tokens as the LLM input. Evaluation tasks
of these models encompass image classification,
segmentation, object detection, vision QA, text-to-
image/image-to-text retrieval, and report genera-
tion, the benchmarks of which include CheXpert
(Irvin et al., 2019), PadChest (Bustos et al., 2020),
SLAKE (Liu et al., 2021a), etc.

6.4 Protein, DNA, RNA, and Multiomics
The FASTA format (Lipman and Pearson, 1985)
naturally represents proteins as amino acid se-
quences and DNAs/RNAs as nucleotide sequences,
enabling models to treat them as “languages”.
Representative resources of such sequences in-
clude UniRef (Suzek et al., 2015) and Swiss-
Prot (Bairoch and Apweiler, 2000) for proteins,
GRCh38 (Harrow et al., 2012) and the 1000
Genomes Project (Consortium, 2015) for DNAs, as
well as RNAcentral (Consortium, 2019) for RNAs.

Encoder-only protein, DNA, and RNA LLMs
(TYPE 1.D), such as ESM-2 (Lin et al., 2023b),
DNABERT (Ji et al., 2021), and RNABERT
(Akiyama and Sakakibara, 2022), adopt BERT-like
architectures and MLM as the pre-training task
(i.e., predicting masked amino acids, nucleotides,
k-mers, or codons); decoder-only models, such
as ProGen (Madani et al., 2023) and DNAGPT
(Zhang et al., 2023a), exploit GPT-like architec-
tures and next token prediction as the pre-training
task. There are also studies jointly considering
text and protein modalities. For instance, ProtST
(Xu et al., 2023b) matches protein sequences with
their text descriptions (i.e., names and functions)
via contrastive learning (TYPE 3.B); BioMedGPT



(Luo et al., 2023c) first projects proteins onto to-
kens and then inputs these tokens together with
text into LLaMA-2 for instruction tuning, bearing
similarity with TYPE 2.D.

Existing multiomics LLMs mainly focus on
single-cell transcriptomics (e.g., scRNA-seq) data,
such as the expression levels of genes within a
single cell (Franzén et al., 2019). Besides BERT-
based (e.g., Geneformer (Theodoris et al., 2023))
and GPT-based (e.g., scGPT (Cui et al., 2024)) ar-
chitectures, Performer (Yang et al., 2022a; Hao
et al., 2024) is widely used due to its linear atten-
tion complexity in handling long scRNA-seq data.

6.5 Applications in Scientific Discovery
Similarly to chemistry, LLMs can automate exper-
iments in biological and medical research. For
example, CRISPR-GPT (Huang et al., 2024a) aug-
ments an LLM agent with domain knowledge
to enhance the design process of CRISPR-based
gene-editing experiments; TrialMind (Wang et al.,
2024h) utilizes LLMs to extract results and synthe-
size clinical evidence from the literature for medi-
cal discovery. Moreover, LLMs can encode biolog-
ical sequences to capture structural properties and
guide protein design. For instance, ESM-1b (Rives
et al., 2021) and ESM-2 (Lin et al., 2023b) en-
able accurate structure prediction of proteins with-
out expensive and time-consuming experiments;
Ferruz and Höcker (2022) fine-tune LLMs on pro-
tein families, which can generate highly divergent
but still potentially functional novel sequences; He
et al. (2024a) leverage an LLM for the de novo
generation of SARS-CoV-2 antibodies with desired
antigen-binding specificity; Hie et al. (2021) de-
velop LLMs to evaluate the evolutionary fitness of
viral variants using sequence data alone.

7 LLMs in Geography, Geology, and
Environmental Science (Table A6)

7.1 Language
Geoscience research papers, climate-related news
articles, Wikipedia pages, corporate sustainability
reports, knowledge bases (e.g., GAKG (Deng et al.,
2021)), and point-of-interest (POI) data (e.g., Open-
StreetMap (Haklay and Weber, 2008)) constitute
the pre-training corpora for geoscience LLMs.

Preliminary research on geoscience LLMs fo-
cuses on pre-training bidirectional LLMs with the
Transformer encoder backbone (TYPE 1.A, e.g.,
ClimateBERT (Webersinke et al., 2021), SpaBERT
(Li et al., 2022b), and MGeo (Ding et al., 2023)).
For instance, SpaBERT and MGeo perform MLM

on a sequence of geolocations for geographic
entity linking and query-POI matching, respec-
tively. More recently, related studies concentrate
on scaling up decoding-style autoregressive LLMs
in geoscience (TYPE 2.A, e.g., K2 (Deng et al.,
2024), OceanGPT (Bi et al., 2023b), and GeoGalac-
tica (Lin et al., 2024c)). For instance, K2 and
OceanGPT adapt LLaMA to geoscience and ocean
science, respectively, via supervised fine-tuning
with domain-specific instructions curated by hu-
man experts and/or augmented by general-domain
LLMs. Evaluations of such models are conducted
on geoscience benchmarks, such as GeoBench
(Deng et al., 2024) and OceanBench (Bi et al.,
2023b), which encompass a broad range of tasks
including QA, classification, knowledge probing,
reasoning, summarization, and generation.

7.2 Language + Graph
Some geoscience applications involve graph sig-
nals, such as heterogeneous POI networks and
knowledge graphs. To handle such signals and
text jointly, ERNIE-GeoL (Huang et al., 2022) in-
troduces a Transformer-based aggregation layer
to deeply fuse text and POI information within a
BERT-based architecture; PK-Chat (Deng et al.,
2023) combines an LLM with a pointer gener-
ation network on a knowledge graph to build a
knowledge-driven dialogue system.

7.3 Language + Vision
Aerial views, together with location descriptions,
profile urban regions. To address language and
vision modalities jointly, UrbanCLIP (Yan et al.,
2024) considers the CLIP architecture (TYPE 3.D),
which is also widely adopted by biomedical vision-
language models as mentioned in subsection 6.3, to
perform text-image contrastive learning for urban
indicator prediction.

7.4 Climate Time Series
The intuitions and methodologies used in LLMs
also facilitate the construction of climate founda-
tion models. Based on the ERA5 (Hersbach et al.,
2020) and CMIP6 (Eyring et al., 2016) datasets of
climate time series, previous studies exploit the ViT
and Swin Transformer architectures to pre-train
foundation models for weather forecasting. Rep-
resentative models include FourCastNet (Pathak
et al., 2022), Pangu-Weather (Bi et al., 2023a), etc.

7.5 Applications in Scientific Discovery
In geography, Wang et al. (2023b) and Zhou et al.
(2024b) highlight the potential of LLMs in urban



planning from sustainability, living, economic, dis-
aster, and environmental perspectives. In geology,
besides climate and weather forecasting, founda-
tion models have been applied to simultaneous
earthquake detection and phase picking (Mousavi
et al., 2020). In environmental science, ChatCli-
mate (Vaghefi et al., 2023) enhances GPT-4 by pro-
viding access to external, scientifically accurate
knowledge on climate change to build a climate
science conversational AI.

8 Challenges and Future Directions

In this survey, we compile literature that elucidates
the data, architectures, and tasks used for scientific
LLM pre-training, as well as how scientific LLMs
have been applied to downstream applications in
scientific discovery. In particular, we underscore
analogous architectures, tasks, and trends observed
during the evolution of scientific LLMs across dif-
ferent fields and modalities. Beyond reviewing
prior research, we present several challenges to
inspire further exploration of this topic.
Diving into Fine-Grained Themes. Most existing
scientific LLMs target a coarse-grained field (e.g.,
chemistry), while some tasks rely on highly spe-
cialized knowledge of a fine-grained theme (e.g.,
Suzuki coupling). When LLMs are pre-trained
on more general corpora, frequently appeared sig-
nals may dominate the model parameter space,
and domain-specific tail knowledge may be wiped
out. We believe that automatically curating in-
depth, theme-focused knowledge graphs (Hope
et al., 2021) to guide the generation process will be
a promising direction to tackle this issue.
Generalizing to Out-of-Distribution Scientific
Data. In the scientific domain, it is common that
the testing distribution shifts from the training dis-
tribution (Zhang et al., 2023e): novel scientific
concepts keep emerging in newly published papers;
unseen molecules with different scaffolds and un-
seen proteins with different numbers of peptide
chains may appear during testing. Handling such
out-of-distribution data remains a challenge for pre-
trained scientific LLMs. To our knowledge, invari-
ant learning (Arjovsky et al., 2019) can serve as the
theoretical foundation for out-of-distribution analy-
ses, and how to integrate it into LLM pre-training
is worth exploring.
Facilitating Trustworthy Predictions. LLMs can
generate plausible-sounding but factually incor-
rect output, commonly known as hallucination (Ji
et al., 2023), which is particularly dangerous in
high-stakes scientific domains such as chemistry

and biomedicine. To mitigate this issue, retrieval-
augmented generation (RAG) provides LLMs with
relevant, up-to-date, and trustworthy information.
However, previous RAG studies in the scientific do-
main mainly focus on retrieving text (Xiong et al.,
2024) and knowledge (Jin et al., 2024), while scien-
tific data are heterogeneous and multi-modal. We
envision that cross-modal RAG (e.g., guiding text
generation with relevant chemicals and proteins)
will present additional opportunities to further en-
hance the trustworthiness of scientific LLMs.

Limitations

This survey primarily covers LLMs in mathematics
and natural sciences. We are aware that LLMs can
also significantly impact social sciences by achiev-
ing remarkable performance in representative tasks
(Ziems et al., 2024) and serving as agents for so-
cial simulation experiments (Horton, 2023), but
we leave the survey of these efforts as future work
due to space limitations. In addition, this paper fo-
cuses on LLMs pre-trained on scientific data or aug-
mented with domain-specific knowledge to benefit
scientific discovery. There are studies (Guo et al.,
2023; Wang et al., 2024f; Yue et al., 2024a; Liang
et al., 2024d) proposing new benchmark datasets
of scientific problems but evaluating the perfor-
mance of general-purpose LLMs only, and we do
not include these works in our survey. Furthermore,
some LLMs may belong to more than one field or
modality category given our classification criteria
in the paper. For instance, BioMedGPT (Luo et al.,
2023c) is pre-trained on biology and chemistry data
jointly; GIT-Mol (Liu et al., 2024a) considers the
language, graph, and vision modalities simultane-
ously. For the sake of brevity, we introduce each of
them in only one subsection.

Acknowledgments

Research was supported in part by US DARPA
INCAS Program No. HR0011-21-C0165 and
BRIES Program No. HR0011-24-3-0325, National
Science Foundation IIS-19-56151, the Molecule
Maker Lab Institute: An AI Research Institutes pro-
gram supported by NSF under Award No. 2019897,
and the Institute for Geospatial Understanding
through an Integrative Discovery Environment (I-
GUIDE) by NSF under Award No. 2118329. Any
opinions, findings, and conclusions or recommen-
dations expressed herein are those of the authors
and do not necessarily represent the views, either
expressed or implied, of DARPA or the U.S. Gov-
ernment.



References
Hisham Abdel-Aty and Ian R Gould. 2022. Large-scale

distributed training of transformers for chemical fin-
gerprinting. Journal of Chemical Information and
Modeling, 62(20):4852–4862.

Hadi Abdine, Michail Chatzianastasis, Costas
Bouyioukos, and Michalis Vazirgiannis. 2024.
Prot2text: Multimodal protein’s function generation
with gnns and transformers. In AAAI’24, pages
10757–10765.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Emre Can Acikgoz, Osman Batur İnce, Rayene Bench,
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A Summary Tables of Scientific LLMs

Table A1-Table A6 summarize the modality, number of parameters, model architecture, pre-training
data, pre-training task(s), and evaluation task(s) of scientific LLMs in each field. Within each field, we
categorize models according to their modality; within each modality, we sort models chronologically. To
be specific, if a paper has a preprint (e.g., arXiv or bioRxiv) version, its publication date is according to
the preprint service. Otherwise, its publication date is according to the conference proceeding or journal.

Table A1: Summary of LLMs in general science. “L”: Language; “L+G”: Language + Graph; “∼”: generally
adopting the architecture but with modifications; “MLM”: masked language modeling; “NSP”: next sentence
prediction; “NER”: named entity recognition; “RE”: relation extraction; “QA”: question answering.

Model Modality Size Architecture Pre-training Data Pre-training Task(s) Evaluation Task(s)

SciBERT (Beltagy et al., 2019) L 110M BERT Semantic Scholar MLM, NSP NER, RE, classification, parsing
SciGPT2 (Luu et al., 2021) L 117M GPT-2 S2ORC next token prediction paper relationship explanation
CATTS (Cachola et al., 2020) L 406M BART SciTLDR sequence to sequence summarization
SciNewsBERT (Smeros et al., 2021) L 110M BERT news headlines MLM, NSP scientific claim extraction
ScholarBERT (Hong et al., 2023) L 340M, 770M BERT Public.Resource.Org, MLM NER, RE, classification

Wikipedia, BookCorpus
AcademicRoBERTa (Yamauchi et al., 2022) L 125M RoBERTa CiNii MLM classification,

author identification
Galactica (Taylor et al., 2022) L 125M, 1.3B, Galactica papers, code, next token prediction, QA, link prediction,

6.7B, 30B, reference materials, instruction tuning knowledge probing,
120B knowledge bases, quantitative reasoning,

web crawl data, chemical name conversion,
instructions molecule classification,

protein function prediction
DARWIN (Xie et al., 2023) L 7B LLaMA papers, QA pairs, instruction tuning QA, classification, regression

instructions
FORGE (Yin et al., 2023) L 1.4B, 13B, GPT-NeoX CORE, AMiner, MAG, next token prediction QA, classification, regression

22B SCOPUS, arXiv
SciGLM (Zhang et al., 2024a) L 6B, 32B ChatGLM SciInstruct instruction tuning QA, quantitative reasoning

SPECTER (Cohan et al., 2020) L+G 110M BERT Semantic Scholar link prediction classification, link prediction,
recommendation

OAG-BERT (Liu et al., 2022b) L+G 110M ∼BERT AMiner, PubMed, MLM classification, link prediction,
OAG recommendation, retrieval,

author name disambiguation
ASPIRE (Mysore et al., 2022) L+G 110M BERT S2ORC link prediction paper similarity estimation
SciNCL (Ostendorff et al., 2022) L+G 110M BERT Semantic Scholar link prediction classification, link prediction,

recommendation
SPECTER 2.0 (Singh et al., 2023) L+G 113M Adapters SciRepEval classification, regression, classification, regression,

link prediction, retrieval link prediction, retrieval,
author name disambiguation,

paper-reviewer matching
SciPatton (Jin et al., 2023b) L+G – GraphFormers MAG MLM, link prediction classification, link prediction
SciMult (Zhang et al., 2023f) L+G 138M MoE MAG, classification, classification, link prediction,

Semantic Scholar, link prediction, retrieval recommendation, retrieval,
SciRepEval patient-article/patient matching

Table A2: Summary of LLMs in mathematics. “L+V”: Language + Vision; “MWP”: math word problems. Other
notations have the same meaning as in previous tables.

Model Modality Size Architecture Pre-training Data Pre-training Task(s) Evaluation Task(s)

GenBERT (Geva et al., 2020) L 110M BERT Wikipedia MLM, QA, MWP
sequence to sequence

MathBERT (Shen et al., 2021) L 110M BERT arXiv, math curricula, MLM classification, auto-grading
syllabi, textbooks

MWP-BERT (Liang et al., 2022) L 110M BERT Ape210K MLM, regression, QA, MWP
classification

BERT-TD (Li et al., 2022c) L 110M BERT Math23K, MathQA sequence to sequence, QA, MWP
contrastive learning

GSM8K-GPT (Cobbe et al., 2021) L 6B, 175B GPT-3 GSM8K supervised fine-tuning QA, MWP
DeductReasoner (Jie et al., 2022) L 125M RoBERTa MAWPS, Math23K, sequence to sequence QA, MWP

MathQA, SVAMP
NaturalProver (Welleck et al., 2022) L 175B GPT-3 NaturalProofs supervised fine-tuning mathematical proof generation
Minerva (Lewkowycz et al., 2022) L 8B, 62B, PaLM arXiv, math web pages next token prediction QA, MWP, quantitative reasoning

540B
Bhāskara (Mishra et al., 2022) L 2.7B GPT-Neo L̄ila instruction tuning QA, MWP, knowledge probing
WizardMath (Luo et al., 2023a) L 7B, 13B, LLaMA-2 GSM8K, MATH instruction tuning QA, MWP

70B
MAmmoTH (Yue et al., 2024b) L 7B, 13B, LLaMA-2 MathInstruct instruction tuning QA, MWP

34B, 70B
7B Mistral

MetaMath (Yu et al., 2024c) L 7B, 13B, LLaMA-2 MetaMathQA instruction tuning QA, MWP
70B
7B Mistral

ToRA (Gou et al., 2024) L 7B, 13B, LLaMA-2 ToRA-Corpus instruction tuning QA, MWP
34B, 70B

MathCoder (Wang et al., 2024c) L 7B, 13B, LLaMA-2 MathCodeInstruct instruction tuning QA, MWP
34B, 70B



(Mathematics, Table Continued)

Model Modality Size Architecture Pre-training Data Pre-training Task(s) Evaluation Task(s)

Llemma (Azerbayev et al., 2024) L 7B, 34B LLaMA-2 Proof-Pile-2 next token prediction QA, MWP, quantitative reasoning
OVM (Yu et al., 2024b) L 7B LLaMA-2 GSM8K supervised fine-tuning QA, MWP, quantitative reasoning

7B Mistral
DeepSeekMath (Shao et al., 2024) L 7B DeepSeek math web pages, next token prediction, QA, MWP, quantitative reasoning,

instructions instruction tuning formal translation
InternLM-Math (Ying et al., 2024) L 7B, 20B InternLM2 Knowledge Pile, next token prediction, QA, MWP, quantitative reasoning,

Proof-Pile-2, instruction tuning formal translation
instructions

OpenMath (Toshniwal et al., 2024) L 7B, 13B, LLaMA-2 OpenMathInstruct-1 instruction tuning QA, MWP
34B, 70B

7B Mistral
Rho-Math (Lin et al., 2024b) L 1B ∼LLaMA-2 OpenWebMath, next token prediction QA, MWP, quantitative reasoning

7B Mistral SlimPajama,
StarCoderData

MAmmoTH2 (Yue et al., 2024c) L 8B LLaMA-3 WebInstruct instruction tuning QA, MWP, quantitative reasoning
7B Mistral

8×7B Mixtral
TheoremLlama (Wang et al., 2024e) L 8B LLaMA-3 Open Bootstrapped instruction tuning mathematical proof generation

Theorems

Inter-GPS (Lu et al., 2021) L+V – ∼BART + Geometry3K, GEOS sequence to sequence geometry problem solving
RetinaNet

Geoformer (Chen et al., 2022a) L+V – VL-T5 + UniGeo sequence to sequence geometry problem solving
ResNet

SCA-GPS (Ning et al., 2023) L+V – RoBERTa + GeoQA, Geometry3K masked image modeling, geometry problem solving
ViT sequence to sequence

UniMath-Flan-T5 L+V – Flan-T5 + SVAMP, GeoQA, image reconstruction, MWP,
(Liang et al., 2023) VQ-VAE TabMWP sequence to sequence geometry problem solving

G-LLaVA (Gao et al., 2023) L+V 7B, 13B LLaVA GeoQA+, Geometry3K text-image matching, geometry problem solving
instruction tuning

TAPAS (Herzig et al., 2020) Table 110M, 340M BERT Wikipedia MLM table QA
TaBERT (Yin et al., 2020) Table 110M, 340M BERT Wikipedia, MLM, table QA

WDC Web Table cell value recovery
GraPPa (Yu et al., 2021) Table 355M RoBERTa Wikipedia MLM, table QA

SQL semantic prediction
TUTA (Wang et al., 2021) Table 110M BERT Wikipedia, MLM, cell type classification,

WDC Web Table, cell-level cloze, table type classification
spreadsheets table context retrieval

RCI (Glass et al., 2021) Table 12M ALBERT WikiSQL, TabMCQ, classification table QA
WikiTableQuestions

TABBIE (Iida et al., 2021) Table 110M ELECTRA Wikipedia, VizNet MLM, column/row population,
replaced token detection column type classification

TAPEX (Liu et al., 2022a) Table 140M, 406M BART WikiTableQuestions sequence to sequence table QA
FORTAP (Cheng et al., 2022) Table 110M BERT spreadsheets MLM, table QA,

numerical reference prediction, formula prediction,
numerical calculation prediction cell type classification

OmniTab (Jiang et al., 2022) Table 406M BART Wikipedia sequence to sequence table QA
ReasTAP (Zhao et al., 2022) Table 406M BART Wikipedia sequence to sequence table QA, table fact verification,

table-to-text generation
Table-GPT (Li et al., 2024b) Table 175B GPT-3.5 instructions instruction tuning table QA, column-finding,

– ChatGPT missing-value identification,
column type classification,

data transformation,
table matching, data cleaning

TableLlama (Zhang et al., 2024e) Table 7B LLaMA-2 TableInstruct instruction tuning table QA, RE, entity linking,
column type classification,

column/row population,
table fact verification,

cell description
TableLLM (Zhang et al., 2024f) Table 7B, 13B LLaMA-2 WikiTQ, FeTaQA, instruction tuning table QA, table updating,

TAT-QA, WikiSQL, table merging, table charting
Spider

Table A3: Summary of LLMs in physics. Notations have the same meaning as in previous tables.

Model Modality Size Architecture Pre-training Data Pre-training Task(s) Evaluation Task(s)

astroBERT (Grezes et al., 2024) L 110M BERT NASA Astrophysics Data System MLM, NSP NER
AstroLLaMA (Nguyen et al., 2023b) L 7B LLaMA-2 arXiv next token prediction paper generation,

paper similarity estimation
AstroLLaMA-Chat (Perkowski et al., 2024) L 7B LLaMA-2 QA pairs, LIMA, OpenOrca, UltraChat instruction tuning QA
PhysBERT (Hellert et al., 2024) L 110M BERT arXiv MLM, classification, retrieval,

contrastive learning clustering

Table A4: Summary of LLMs in chemistry and materials science. “L+G+V”: Language + Graph + Vision; “KG”:
knowledge graph; “SMILES”: simplified molecular-input line-entry system. Other notations have the same meaning
as in previous tables.

Model Modality Size Architecture Pre-training Data Pre-training Task(s) Evaluation Task(s)

ChemBERT (Guo et al., 2022) L 110M BERT chemistry journals MLM NER
MatSciBERT (Gupta et al., 2022) L 110M BERT ScienceDirect MLM NER, RE, classification
MatBERT (Trewartha et al., 2022) L 110M BERT materials science journals MLM NER
BatteryBERT (Huang and Cole, 2022) L 110M BERT Elsevier, Springer, RSC MLM QA, classification
MaterialsBERT (Shetty et al., 2023) L 110M BERT materials science journals MLM, NSP NER
Recycle-BERT (Kumar et al., 2023) L 110M BERT plastic recycling articles classification QA, classification
CatBERTa (Ock et al., 2023) L 125M RoBERTa OC20 regression regression
LLM-Prop (Rubungo et al., 2023) L 37M T5 (encoder) Materials Project classification, regression classification, regression



(Chemistry and Materials Science, Table Continued)

Model Modality Size Architecture Pre-training Data Pre-training Task(s) Evaluation Task(s)

ChemDFM (Zhao et al., 2024) L 13B LLaMA chemistry papers, next token prediction, QA, classification,
textbooks, instructions instruction tuning name conversion,

molecule captioning,
text-based molecule design,

reaction prediction, retrosynthesis
CrystalLLM (Gruver et al., 2024) L 7B, 13B, LLaMA-2 Materials Project instruction tuning crystal generation

70B
ChemLLM (Zhang et al., 2024b) L 7B InternLM2 QA pairs, ChemData instruction tuning QA, classification,

name conversion,
molecule captioning,

text-based molecule design,
reaction prediction, retrosynthesis

LlaSMol (Yu et al., 2024a) L 6.7B Galactica SMolInstruct instruction tuning QA, classification, regression,
7B LLaMA-2 name conversion,
7B Mistral molecule captioning,

text-based molecule design,
reaction prediction, retrosynthesis

Text2Mol (Edwards et al., 2021) L+G – BERT + PubChem, ChEBI-20 text-graph matching text-to-molecule retrieval
GCN

KV-PLM (Zeng et al., 2022) L+G 110M BERT S2ORC, PubChem text-graph matching NER, RE, classification,
text-to-molecule retrieval,
molecule-to-text retrieval

MolT5 (Edwards et al., 2022) L+G 60M, 220M, T5 C4, ZINC, ChEBI-20 sequence to sequence molecule captioning,
770M text-based molecule design

MoMu (Su et al., 2022) L+G – BERT + S2ORC, PubChem text-graph matching classification,
GIN text-to-molecule retrieval,

molecule-to-text retrieval,
molecule captioning,

text-based molecule design
MoleculeSTM (Liu et al., 2023d) L+G – BERT + PubChem text-graph matching classification,

GIN text-to-molecule retrieval,
molecule-to-text retrieval,
text-based molecule design

Text+Chem T5 L+G 60M, 220M T5 Pistachio, ChEBI-20, sequence to sequence molecule captioning,
(Christofidellis et al., 2023) experimental procedures text-based molecule design,

reaction prediction, retrosynthesis,
paragraph-to-action generation

GIMLET (Zhao et al., 2023a) L+G 60M ∼T5 ChEMBL instruction tuning classification, regression
MolFM (Luo et al., 2023b) L+G – ∼BERT + S2ORC, PubChem MLM, KG embedding, classification,

GIN text-graph matching text-to-molecule retrieval,
molecule-to-text retrieval,

molecule captioning,
text-based molecule design

MolCA (Liu et al., 2023e) L+G – Galactica + PubChem text-graph matching, classification, name conversion,
GIN graph-to-text generation molecule-to-text retrieval,

molecule captioning,
functional group counting

InstructMol (Cao et al., 2023) L+G – LLaMA + PubChem, MoleculeNet, text-graph matching, classification, regression,
GIN ChEBI-20, USPTO instruction tuning molecule captioning,

reaction prediction, retrosynthesis,
reagent selection

3D-MoLM (Li et al., 2024c) L+G – LLaMA-2 + PubChem, 3D-MoIT text-graph matching, QA, regression,
Uni-Mol graph-to-text generation, molecule-to-text retrieval,

instruction tuning molecule captioning

GIT-Mol (Liu et al., 2024a) L+G+V – BERT + PubChem, ChEBI-20 text-graph/image/text classification,
GIN + matching, molecule captioning,
Swin supervised fine-tuning text-based molecule design,

molecule image recognition

SMILES-BERT (Wang et al., 2019) Molecule – ∼BERT ZINC MLM classification
MAT (Maziarka et al., 2020) Molecule – ∼BERT ZINC masked node prediction classification, regression
ChemBERTa (Chithrananda et al., 2020) Molecule 125M RoBERTa PubChem MLM classification
MolBERT (Fabian et al., 2020) Molecule 110M BERT ChEMBL MLM, regression, classification, regression,

SMILES equivalence virtual screening
rxnfp (Schwaller et al., 2021b) Molecule 110M BERT Pistachio, USPTO classification classification,

reaction representation learning
RXNMapper (Schwaller et al., 2021a) Molecule 770K ∼ALBERT USPTO MLM atom-mapping
MoLFormer (Ross et al., 2022) Molecule 47M linear PubChem, ZINC MLM classification, regression

attention
Chemformer (Irwin et al., 2022) Molecule 45M, 230M ∼BART USPTO, ChEMBL, sequence to sequence, regression,

MoleculeNet regression reaction prediction, retrosynthesis,
molecule generation

R-MAT (Maziarka et al., 2024) Molecule – ∼BERT ZINC, ChEMBL masked node prediction, classification, regression
regression

MolGPT (Bagal et al., 2022) Molecule 6M ∼GPT-1 ZINC, ChEMBL next token prediction molecule generation
T5Chem (Lu and Zhang, 2022) Molecule – ∼T5 PubChem sequence to sequence classification, regression,

reaction prediction, retrosynthesis
ChemGPT (Frey et al., 2023) Molecule 4.7M, 19M, ∼GPT-Neo PubChem next token prediction –

1.2B
Uni-Mol (Zhou et al., 2023) Molecule – SE(3) ZINC, ChEMBL, 3D position recovery classification, regression,

Transformer RCSB PDB molecule conformation generation,
binding pose prediction

TransPolymer (Xu et al., 2023a) Molecule – ∼RoBERTa PI1M MLM regression
polyBERT Molecule 86M DeBERTa density functional theory, MLM, regression

(Kuenneth and Ramprasad, 2023) experiments regression
MFBERT Molecule – ∼RoBERTa GDB-13, ZINC, MLM classification, regression,

(Abdel-Aty and Gould, 2022) PubChem, ChEMBL, virtual screening
USPTO

SPMM (Chang and Ye, 2024) Molecule – ∼BERT PubChem next token prediction, classification, regression,
SMILES-property reaction prediction, retrosynthesis,

matching SMILES-to-property generation,
property-to-SMILES generation

BARTSmiles (Chilingaryan et al., 2024) Molecule 406M BART ZINC sequence to sequence classification, regression,
reaction prediction, retrosynthesis

MolGen (Fang et al., 2024b) Molecule 406M BART ZINC, NPASS sequence to sequence, molecule generation
7B LLaMA prefix tuning

SELFormer (Yüksel et al., 2023) Molecule 58M, 87M ∼RoBERTa ChEMBL MLM classification, regression
PolyNC (Qiu et al., 2024a) Molecule 220M T5 density functional theory, sequence to sequence classification, regression

experiments



Table A5: Summary of LLMs in biology and medicine. “Multi”: Multiomics (e.g., single-cell); “NLI”: natural
language inference; “VQA”: visual question answering; “EHR”: electronic health record; “EMR”: electronic
medical record; “PPI”: protein-protein interaction. Other notations have the same meaning as in previous tables.

Model Modality Size Architecture Pre-training Data Pre-training Task(s) Evaluation Task(s)

BioBERT (Lee et al., 2020) L 110M, 340M BERT PubMed, PMC MLM, NSP NER, RE, QA
BioELMo (Jin et al., 2019) L 93M ELMo PubMed next token prediction, NER, NLI

previous token prediction
ClinicalBERT L 110M BERT MIMIC-III MLM, NSP NER, NLI

(Alsentzer et al., 2019)
ClinicalBERT (Huang et al., 2019) L 110M BERT MIMIC-III next token prediction, word similarity estimation,

previous token prediction hospital readmission prediction
BlueBERT (Peng et al., 2019) L 110M, 340M BERT PubMed, MIMIC-III MLM, NSP NER, RE, NLI, classification,

sentence similarity estimation
BEHRT (Li et al., 2020) L – ∼BERT Clinical Practice MLM disease prediction

Research Datalink
EhrBERT (Li et al., 2019) L – ∼BERT MADE 1.0 entity linking entity linking
Clinical XLNet (Huang et al., 2020) L 110M XLNet MIMIC-III permutation language modeling mortality prediction
ouBioBERT (Wada et al., 2020) L 110M BERT PubMed MLM, NSP NER, RE, NLI, classification,

sentence similarity estimation
COVID-Twitter-BERT L 340M BERT COVID-19 tweets MLM, NSP classification, sentiment analysis,

(Müller et al., 2023) stance prediction
Med-BERT (Rasmy et al., 2021) L – ∼BERT Cerner Health Facts MLM, classification disease prediction
Bio-ELECTRA (Ozyurt, 2020) L 110M ELECTRA PubMed MLM, replaced token detection NER, QA
BiomedBERT (Gu et al., 2021) L 110M, 340M BERT PubMed, PMC MLM, NSP NER, RE, QA, classification,

sentence similarity estimation
MCBERT (Zhang et al., 2020) L 110M BERT Chinese media, MLM, NSP NER, QA, classification, retrieval,

encyclopedia, EHRs paraphrase identification
BRLTM (Meng et al., 2021a) L – ∼BERT EHRs MLM disease prediction
BioRedditBERT L 110M BERT Reddit entity linking entity linking

(Basaldella et al., 2020)
BioMegatron (Shin et al., 2020) L 345M BERT PubMed, PMC MLM, NSP NER, RE, QA
SapBERT (Liu et al., 2021b) L 110M BERT UMLS synonym alignment entity linking
ClinicalTransformer L 110M BERT MIMIC-III MLM, NSP, NER

(Yang et al., 2020) 125M RoBERTa sentence order prediction,
12M ALBERT replaced token detection,
110M ELECTRA permutation language modeling
110M XLNet
149M Longformer
86M DeBERTa

BioRoBERTa (Lewis et al., 2020b) L 125M, 355M RoBERTa PubMed, PMC, MLM NER, RE, NLI, classification
MIMIC-III

RAD-BERT (Bressem et al., 2020) L 110M BERT radiology reports MLM, NSP classification
BioMedBERT L 340M BERT BREATHE MLM, NSP NER, RE, QA, retrieval

(Chakraborty et al., 2020)
LBERT (Warikoo et al., 2021) L – ∼BERT PubMed RE RE
ELECTRAMed (Miolo et al., 2021) L 110M ELECTRA PubMed MLM, replaced token detection NER, RE, QA
KeBioLM (Yuan et al., 2021) L 110M BERT PubMed, UMLS MLM, NER, entity linking NER, RE, knowledge probing
SciFive (Phan et al., 2021) L 220M, 770M T5 PubMed, PMC sequence to sequence NER, RE, QA, NLI, classification
BioALBERT (Naseem et al., 2022) L 12M, 18M ALBERT PubMed, PMC, MLM, NER, RE, QA, NLI, classification,

MIMIC-III sentence order prediction sentence similarity estimation
Clinical-Longformer L 149M Longformer MIMIC-III MLM NER, QA, NLI, classification

(Li et al., 2022a) 110M BigBird
BioBART (Yuan et al., 2022a) L 140M, 406M BART PubMed sequence to sequence NER, entity linking,

summarization, dialogue
BioGPT (Luo et al., 2022) L 355M, 1.5B GPT-2 PubMed next token prediction RE, QA, classification, generation
Med-PaLM (Singhal et al., 2023a) L 8B, 62B, PaLM instructions instruction tuning QA

540B
GatorTron (Yang et al., 2022b) L 345M, 3.9B, BERT Wikipedia, PubMed, MLM NER, RE, QA, NLI,

8.9B PMC, MIMIC-III, sentence similarity estimation
clinical narratives

ChatDoctor (Li et al., 2023e) L 7B LLaMA HealthCareMagic instruction tuning dialogue
DoctorGLM (Xiong et al., 2023) L 6B ChatGLM medical dialogues instruction tuning dialogue
BenTsao (Wang et al., 2023d) L 7B LLaMA instructions instruction tuning QA, dialogue
MedAlpaca (Han et al., 2023) L 7B, 13B LLaMA medical flash cards, instruction tuning QA

Stack Exchange,
WikiDoc

PMC-LLaMA (Wu et al., 2024) L 7B, 13B LLaMA biomedical papers, next token prediction, QA
books, instructions instruction tuning

Med-PaLM 2 (Singhal et al., 2023b) L 8B, 62B, PaLM 2 instructions instruction tuning QA
540B

HuatuoGPT (Zhang et al., 2023b) L 7B, 13B BLOOM instructions instruction tuning QA, dialogue
MedCPT (Jin et al., 2023c) L 110M BERT PubMed search logs retrieval classification, link prediction,

recommendation, retrieval,
sentence similarity estimation

Zhongjing (Yang et al., 2024b) L 13B Ziya-LLaMA textbooks, QA pairs, next token prediction, QA
knowledge bases, EHRs, instruction tuning
EMRs, clinical reports,

instructions
DISC-MedLLM (Bao et al., 2023) L 13B Baichuan instructions instruction tuning QA, dialogue
DRG-LLaMA (Wang et al., 2024a) L 7B, 13B LLaMA MIMIC-IV classification diagnosis-related group prediction
Qilin-Med (Ye et al., 2023b) L 7B Baichuan ChiMed-CPT, next token prediction, QA, dialogue

ChiMed-SFT, instruction tuning
ChiMed-DPO

AlpaCare (Zhang et al., 2023d) L 7B, 13B LLaMA MedInstruct-52k instruction tuning QA, summarization
7B, 13B LLaMA-2

BianQue (Chen et al., 2023d) L 6B ChatGLM BianQueCorpus instruction tuning dialogue
HuatuoGPT-II (Chen et al., 2023a) L 7B, 13B, Baichuan 2 instructions instruction tuning QA, dialogue

34B
Taiyi (Luo et al., 2024) L 7B Qwen instructions instruction tuning NER, RE, QA, classification
MEDITRON (Chen et al., 2023e) L 7B, 70B LLaMA-2 GAP-Replay next token prediction, QA

instruction tuning
PLLaMa (Yang et al., 2024c) L 7B, 13B LLaMA-2 plant science journals, next token prediction, QA

instructions instruction tuning
BioMistral (Labrak et al., 2024) L 7B Mistral PMC next token prediction QA
Me LLaMA (Xie et al., 2024) L 13B, 70B LLaMA-2 PubMed, PMC, next token prediction, NER, RE, QA, NLI, classification,

MIMIC-III, MIMIC-IV, instruction tuning summarization
MIMIC-CXR,

RedPajama, instructions
BiMediX (Pieri et al., 2024) L 8×7B Mixtral BiMed1.3M instruction tuning QA
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MMedLM (Qiu et al., 2024b) L 7B InternLM MMedC next token prediction QA
1.8B, 7B InternLM2

8B LLaMA-3
BioMedLM (Bolton et al., 2024) L 2.7B ∼GPT-2 PubMed, PMC next token prediction QA
Hippocrates (Acikgoz et al., 2024) L 7B LLaMA-2 PubMed, PMC, next token prediction, QA

7B Mistral medical guidelines, instruction tuning
instructions

BMRetriever (Xu et al., 2024) L 410M, 1B Pythia biomedical papers, contrastive learning, QA, recommendation, retrieval,
2B Gemma textbooks, QA pairs, instruction tuning entity linking,
7B Mistral instructions sentence similarity estimation

Panacea (Lin et al., 2024a) L 7B Mistral TrialAlign, next token prediction, summarization, query generation,
TrialInstruct instruction tuning query expansion, trial design,

patient-trial matching

G-BERT (Shang et al., 2019) L+G – BERT + MIMIC-III, ICD-9, MLM, diagnosis prediction, medication recommendation
GAT ATC medication prediction

CODER (Yuan et al., 2022b) L+G 110M BERT UMLS link prediction entity linking, link prediction,
entity similarity estimation

MoP (Meng et al., 2021b) L+G – Adapters UMLS link prediction QA, NLI, classification
BioLinkBERT L+G 110M, 340M BERT PubMed MLM, NER, RE, QA, classification,

(Yasunaga et al., 2022b) link prediction sentence similarity estimation
DRAGON (Yasunaga et al., 2022a) L+G 360M ∼BERT + PubMed, UMLS MLM, QA

∼GAT link prediction

ConVIRT (Zhang et al., 2022) L+V – BERT + MIMIC-CXR, text-image matching classification,
ResNet musculoskeletal text-to-image retrieval,

text-image pairs image-to-image retrieval
MMBERT (Khare et al., 2021) L+V – BERT + ROCO MLM VQA

ResNet
MedViLL (Moon et al., 2022) L+V – BERT + MIMIC-CXR MLM, VQA, classification,

ResNet text-image matching text-to-image retrieval,
image-to-text retrieval,

report generation
GLoRIA (Huang et al., 2021) L+V – BERT + CheXpert text-image matching classification, segmentation,

ResNet image-to-text retrieval
LoVT (Müller et al., 2022) L+V – BERT + MIMIC-CXR text-image matching segmentation, detection

ResNet
BioViL (Boecking et al., 2022) L+V – BERT + MIMIC-CXR MLM, NLI, classification, segmentation,

ResNet text-image matching phrase grounding
M3AE (Chen et al., 2022c) L+V – RoBERTa + ROCO, MedICaT MLM, VQA, classification,

ViT masked image modeling, text-to-image retrieval,
text-image matching image-to-text retrieval

ARL (Chen et al., 2022d) L+V – BERT + ROCO, MedICaT, MLM, VQA, classification,
ViT MIMIC-CXR masked image modeling, text-to-image retrieval,

text-image matching image-to-text retrieval
CheXzero (Tiu et al., 2022) L+V – Transformer + MIMIC-CXR text-image matching classification

ViT
MGCA (Wang et al., 2022a) L+V – BERT + MIMIC-CXR text-image matching classification, segmentation,

ResNet / ViT detection
MedCLIP (Wang et al., 2022b) L+V – BERT + MIMIC-CXR, text-image matching classification,

Swin CheXpert image-to-text retrieval
BioViL-T (Bannur et al., 2023) L+V – BERT + MIMIC-CXR MLM, classification, report generation,

ResNet text-image matching sentence similarity estimation
BiomedCLIP (Zhang et al., 2023c) L+V – BERT + PMC figure-caption text-image matching VQA, classification,

ViT pairs, fine-grained text-to-image retrieval,
text-image pairs image-to-text retrieval

PMC-CLIP (Lin et al., 2023a) L+V – BERT + PMC figure-caption MLM, VQA, classification,
ResNet pairs, subfigure- text-image matching text-to-image retrieval,

subcaption pairs image-to-text retrieval
Xplainer (Pellegrini et al., 2023) L+V – BERT + MIMIC-CXR text-image matching classification

ResNet
RGRG (Tanida et al., 2023) L+V – GPT-2 + MIMIC-CXR detection, classification, report generation

ResNet next token prediction
BiomedGPT (Zhang et al., 2024c) L+V 33M, 93M, ∼BERT + IU X-Ray, MedICaT, MLM, VQA, NLI, classification,

182M ResNet + PathVQA, Peir Gross, masked image modeling, summarization, image captioning,
∼GPT SLAKE, DeepLesion, object detection, clinical trial matching,

OIA-DDR, CheXpert, VQA, treatment suggestion,
CytoImageNet, ISIC, image captioning mortality prediction

Retinal Fundus,
MIMIC-III, BioNLP,

PubMed
Med-UniC (Wan et al., 2023) L+V – BERT + MIMIC-CXR, text-image matching, classification, segmentation,

ResNet / ViT PadChest contrastive learning detection
LLaVA-Med (Li et al., 2023a) L+V 7B LLaVA PMC figure-caption text-image matching, VQA

pairs, instructions instruction tuning
MI-Zero (Lu et al., 2023) L+V – BERT + histopathology figure- text-image matching classification

CTransPath caption pairs
XrayGPT (Thawkar et al., 2024) L+V – LLaMA + MIMIC-CXR, text-image matching VQA

Swin Open-i
MONET (Kim et al., 2024) L+V – BERT + PMC and textbook text-image matching classification, data auditing,

ViT figure-caption pairs model auditing
QuiltNet (Ikezogwo et al., 2023) L+V – BERT + Quilt-1M text-image matching classification,

ViT text-to-image retrieval,
image-to-text retrieval

MUMC (Li et al., 2023c) L+V – BERT + ROCO, MedICaT, MLM, VQA
ViT ImageCLEFmedical text-image matching

Caption
M-FLAG (Liu et al., 2023a) L+V – BERT + MIMIC-CXR text-image matching classification, segmentation,

ResNet detection
PRIOR (Cheng et al., 2023) L+V – BERT + MIMIC-CXR text-image matching, classification, segmentation,

ResNet image reconstruction, detection,
sentence prototype generation image-to-text retrieval

Med-PaLM M (Tu et al., 2024) L+V 12B, 84B, PaLM-E MultiMedBench instruction tuning QA, VQA, classification,
562B report generation,

report summarization
CITE (Zhang et al., 2023i) L+V – BERT + PatchGastric text-image matching, classification

ViT prompt tuning
Med-Flamingo (Moor et al., 2023) L+V – Flamingo PMC figure-caption next token prediction VQA

pairs, textbooks
RadFM (Wu et al., 2023) L+V 14B LLaMA + MedMD, RadMD next token prediction, VQA, classification,

ViT instruction tuning report generation
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PLIP (Huang et al., 2023) L+V – GPT-2 + Twitter text-image pairs, text-image matching classification,
ViT PathLAION text-to-image retrieval,

image-to-image retrieval
MaCo (Huang et al., 2024b) L+V – BERT + MIMIC-CXR masked image modeling, classification, segmentation,

ViT text-image matching phrase grounding
CXR-CLIP (You et al., 2023) L+V – BERT + MIMIC-CXR, text-image matching, classification,

ResNet / Swin CheXpert, ChestX-ray14 contrastive learning image-to-text retrieval
Qilin-Med-VL (Liu et al., 2023b) L+V – LLaMA-2 + ChiMed-VL-Alignment, text-image matching, VQA

ViT ChiMed-VL-Instruction instruction tuning
BioCLIP (Stevens et al., 2024) L+V – GPT-2 + TreeOfLife-10M text-image matching classification

ViT
M3D (Bai et al., 2024) L+V – LLaMA-2 + M3D-Cap, M3D-VQA, text-image matching, VQA, segmentation,

ViT M3D-RefSeg, M3D-Seg instruction tuning text-to-image retrieval,
image-to-text retrieval,

report generation, 3D positioning
Med-Gemini (Saab et al., 2024) L+V – Gemini MedQA, LiveQA, instruction tuning QA, VQA, signal QA, video QA,

HealthSearchQA, classification,
MedicationQA, long-form text generation,

MIMIC-III, SLAKE, long EHR understanding
PathVQA, ROCO,

PAD-UFES-20,
MIMIC-CXR, ECG-QA

Med-Gemini-2D/3D/Polygenic L+V – Gemini SLAKE, MIMIC-CXR, VQA, captioning, VQA, classification,
(Yang et al., 2024a) Digital Knee X-ray, instruction tuning report generation,

CXR-US2, NLST, disease risk prediction
CT-US1, PathVQA,

Histopathology,
PAD-UFES-20,

EyePACS, PMC-OA,
VQA-Med, UK Biobank

Mammo-CLIP (Ghosh et al., 2024) L+V – BERT + UPMC, VinDr-Mammo text-image matching classification, localization
EfficientNet

ProtTrans (Elnaggar et al., 2021) Protein 420M ∼BERT UniRef50, UniRef100, MLM, secondary structure prediction,
224M ∼ALBERT BFD permutation language modeling, function prediction
409M ∼XLNet replaced token detection,
420M ∼ELECTRA sequence to sequence

3B, 11B T5
ESM-1b (Rives et al., 2021) Protein 650M ∼BERT UniRef50, UniRef100 MLM secondary structure prediction,

contact prediction,
remote homology detection

MSA Transformer (Rao et al., 2021) Protein 100M ∼BERT UniRef50 MLM secondary structure prediction,
contact prediction

ESM-1v (Meier et al., 2021) Protein 650M ∼BERT UniRef90 MLM mutation effect prediction
AminoBERT Protein – ∼BERT UniParc MLM, secondary structure prediction,

(Chowdhury et al., 2022) chunk permutation prediction contact prediction
ProteinBERT (Brandes et al., 2022) Protein 16M ∼BERT UniRef90, MLM secondary structure prediction,

Gene Ontology remote homology detection,
fitness prediction

ProtGPT2 (Ferruz et al., 2022) Protein 738M GPT-2 UniRef50 next token prediction secondary structure prediction,
disorder prediction,

protein sequence generation
ESM-IF1 (Hsu et al., 2022) Protein 142M Transformer + UniRef50 next token prediction fixed backbone protein design,

GVP-GNN mutation effect prediction
ProGen (Madani et al., 2023) Protein 1.6B CTRL UniParc, UniprotKB, next token prediction protein sequence generation

Pfam, NCBI Taxonomy
ProGen2 (Nijkamp et al., 2023) Protein 151M, 764M, ∼GPT-3 UniRef90, BFD next token prediction protein sequence generation,

2.7B, 6.4B fitness prediction
ESM-2 (Lin et al., 2023b) Protein 8M, 35M, ∼BERT UniRef50, UniRef90 MLM secondary structure prediction,

150M, 650M, contact prediction,
3B, 15B 3D structure prediction

Ankh (Elnaggar et al., 2023) Protein 450M, 1.1B ∼T5 UniRef50 sequence to sequence secondary structure prediction,
contact prediction,

embedding-based annotation
transfer,

remote homology detection,
fitness prediction,

localization prediction
ProtST (Xu et al., 2023b) Protein – ∼BERT Swiss-Prot MLM, fitness prediction,

text-protein matching localization prediction,
function annotation

LM-Design (Zheng et al., 2023b) Protein 659M ∼BERT + CATH, UniRef50 MLM fixed backbone protein design
ProtMPNN

ProteinDT (Liu et al., 2023c) Protein – ∼BERT Swiss-Prot text-protein matching text-to-protein generation,
text-guided protein editing,

secondary structure prediction,
contact prediction,

remote homology detection,
fitness prediction

Prot2Text (Abdine et al., 2024) Protein 256M, 283M, ∼BERT + Swiss-Prot sequence to sequence protein-to-text generation
398M, 898M R-GCN +

∼GPT-2
BioMedGPT (Luo et al., 2023c) Protein 10B LLaMA-2 + S2ORC, PubChemQA, next token prediction, QA

GraphMVP + UniProtQA instruction tuning
ESM-2

SaProt (Su et al., 2024) Protein 35M, 650M ∼BERT UniRef50 MLM mutation effect prediction,
fitness prediction,

localization prediction,
function annotation,

PPI prediction
BioT5 (Pei et al., 2023) Protein 220M T5 C4, ZINC, UniRef50, sequence to sequence molecule property prediction,

PubMed, PubChem, protein property prediction,
Swiss-Prot drug-target interaction prediction,

PPI prediction,
molecule captioning,

text-based molecule design
ProLLaMA (Lv et al., 2024) Protein 7B LLaMA-2 UniRef50, instructions next token prediction, protein sequence generation,

instruction tuning protein property prediction
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DNABERT (Ji et al., 2021) DNA 110M BERT GRCh38 MLM chromatin profile prediction,
promoter prediction,
splice site prediction,

functional genetic variant
identification

GenSLMs (Zvyagin et al., 2023) DNA 25M, 250M, ∼GPT-2 prokaryotic gene next token prediction SARS-CoV-2 genome evolution
2.5B, 25B sequences prediction

Nucleotide Transformer DNA 50M, 100M, ∼BERT GRCh38, MLM chromatin profile prediction,
(Dalla-Torre et al., 2023) 250M, 500M 1000 Genomes, enhancer prediction,

multispecies genomes promoter prediction,
epigenetic marks prediction,

splice site prediction
GENA-LM (Fishman et al., 2023) DNA 110M, 340M BERT T2T-CHM13, MLM enhancer prediction,

110M BigBird 1000 Genomes, promoter prediction,
multispecies genomes epigenetic marks prediction,

splice site prediction,
species classification

DNABERT-2 (Zhou et al., 2024a) DNA 110M BERT GRCh38, MLM chromatin profile prediction,
multispecies genomes promoter prediction,

epigenetic marks prediction,
splice site prediction,
species classification,

SARS-CoV-2 variant prediction,
enhancer-promoter interaction

HyenaDNA (Nguyen et al., 2023a) DNA 0.4M, 3.3M, Hyena GRCh38 next token prediction chromatin profile prediction,
6.6M enhancer prediction,

promoter prediction,
epigenetic marks prediction,

splice site prediction,
species classification

DNAGPT (Zhang et al., 2023a) DNA 0.1B, 3B ∼GPT-3 Ensembl next token prediction, genome generation,
6.6M sequence order prediction, chromatin profile prediction,

regression promoter prediction,
genomic signals and regions

recognition

RNABERT RNA – ∼BERT RNAcentral MLM RNA structural alignment,
(Akiyama and Sakakibara, 2022) RNA clustering

RNA-FM (Chen et al., 2022b) RNA – ∼BERT RNAcentral MLM secondary structure prediction,
3D structure prediction,
protein-RNA interaction,

mean ribosome load prediction
SpliceBERT (Chen et al., 2024) RNA 19.4M ∼BERT UCSC genome browser MLM human branchpoint prediction,

splice site prediction
RNA-MSM (Zhang et al., 2024g) RNA – ∼BERT Rfam MLM secondary structure prediction,

solvent accessibility prediction
CodonBERT (Li et al., 2023d) RNA – ∼BERT mRNA sequences MLM, mRNA property prediction

homologous sequences
prediction

UTR-LM (Chu et al., 2024) RNA – ∼BERT 5’ UTR sequences MLM, mean ribosome load prediction,
classification, mRNA property prediction,

regression internal ribosome entry site
prediction

scBERT (Yang et al., 2022a) Multi – Performer PanglaoDB MLM cell type annotation,
novel cell type discovery

scGPT (Cui et al., 2024) Multi – ∼GPT-3 CELLxGENE MLM cell type annotation,
perturbation response prediction,

multi-batch integration,
multi-omic integration,
gene network inference

scFoundation (Hao et al., 2024) Multi 100M Transformer + scRNA-seq data MLM cell clustering,
Performer drug response prediction,

perturbation response prediction,
cell type annotation,

gene network inference
Geneformer (Theodoris et al., 2023) Multi 10M, 40M ∼BERT Genecorpus-30M MLM gene dosage sensitivity prediction,

chromatin dynamics prediction,
network dynamics prediction

CellLM (Zhao et al., 2023b) Multi – Performer PanglaoDB, MLM, classification, cell type annotation,
CancerSCEM contrastive learning drug sensitivity prediction

CellPLM (Wen et al., 2024) Multi 82M Transformer scRNA-seq data, MLM cell clustering,
spatially-resolved scRNA-seq denoising,

transcriptomic data spatial transcriptomic imputation,
cell type annotation

Table A6: Summary of LLMs in geography, geology, and environmental science. “Climate”: Climate Time Series;
“POI”: point of interest. Other notations have the same meaning as in previous tables.

Model Modality Size Architecture Pre-training Data Pre-training Task(s) Evaluation Task(s)

ClimateBERT L 82M DistilRoBERTa climate-related news, papers, MLM classification, fact-checking
(Webersinke et al., 2021) corporate climate reports

SpaBERT (Li et al., 2022b) L 110M, 340M BERT OpenStreetMap MLM, entity typing, entity linking
masked entity prediction

MGeo (Ding et al., 2023) L 213M ∼BERT text-geolocation pairs MLM, query-POI matching
masked geographic modeling,

contrastive learning
K2 (Deng et al., 2024) L 7B LLaMA geoscience papers, next token prediction, QA

Wikipedia, instructions instruction tuning
OceanGPT (Bi et al., 2023b) L 7B LLaMA-2 ocean science papers, next token prediction, QA, classification, extraction,

instructions instruction tuning knowledge probing,
commonsense reasoning,

summarization, generation
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ClimateBERT-NetZero L 82M DistilRoBERTa Net Zero Tracker classification classification
(Schimanski et al., 2023)

GeoLM (Li et al., 2023f) L 110M, 340M BERT OpenStreetMap, MLM, NER, RE, entity typing,
Wikipedia contrastive learning entity linking

GeoGalactica (Lin et al., 2024c) L 30B Galactica geoscience papers, code, next token prediction, QA, knowledge probing,
Wikipedia, instructions instruction tuning quantitative reasoning,

summarization, generation

ERNIE-GeoL (Huang et al., 2022) L+G – Transformer + Baidu Maps MLM, classification,
graph aggregation (POI database, geocoding query-POI matching,

search logs) address parsing, geocoding,
next POI recommendation

PK-Chat (Deng et al., 2023) L+G 132M ∼UniLM Geoscience Academic next token prediction, task-oriented dialogue
Knowledge Graph bag-of-words prediction,

classification

UrbanCLIP (Yan et al., 2024) L+V – Transformer + satellite images, next token prediction, urban indicator prediction
ViT location descriptions, text-image matching

FourCastNet (Pathak et al., 2022) Climate – ∼ViT ERA5 regression weather forecasting
Pangu-Weather (Bi et al., 2023a) Climate – ∼Swin ERA5 regression weather forecasting
ClimaX (Nguyen et al., 2023c) Climate – ∼ViT CMIP6 regression weather forecasting,

climate projection,
climate model downscaling

FengWu (Chen et al., 2023b) Climate – Transformer ERA5 regression weather forecasting
W-MAE (Man et al., 2023) Climate – ViT ERA5 masked image modeling weather forecasting
FuXi (Chen et al., 2023c) Climate – ∼Swin V2 ERA5 regression weather forecasting
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