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Abstract—GitHub has become an important platform for code
sharing and scientific exchange. With the massive number of
repositories available, there is a pressing need for topic-based
search. Even though the topic label functionality has been
introduced, the majority of GitHub repositories do not have any
labels, impeding the utility of search and topic-based analysis.
This work targets the automatic repository classification problem
as keyword-driven hierarchical classification. Specifically, users
only need to provide a label hierarchy with keywords to supply as
supervision. This setting is flexible, adaptive to the users’ needs,
accounts for the different granularity of topic labels and requires
minimal human effort. We identify three key challenges of this
problem, namely (1) the presence of multi-modal signals; (2)
supervision scarcity and bias; (3) supervision format mismatch.
In recognition of these challenges, we propose the HIGITCLASS
framework, comprising of three modules: heterogeneous informa-
tion network embedding; keyword enrichment; topic modeling
and pseudo document generation. Experimental results on two
GitHub repository collections confirm that HIGITCLASS is
superior to existing weakly-supervised and dataless hierarchical
classification methods, especially in its ability to integrate both
structured and unstructured data for repository classification.

Index Terms—hierarchical classification, GitHub, weakly-
supervised learning

I. INTRODUCTION

For the computer science field, code repositories are an
indispensable part of the knowledge dissemination process,
containing valuable details for reproduction. For software
engineers, sharing code also promotes the adoption of best
practices and accelerates code development. The needs of the
scientific community and that of software developers have
facilitated the growth of online code collaboration platforms,
the most popular of which is GitHub, with over 96 million
repositories and 31 million users as of 2018. With the over-
whelming number of repositories hosted on GitHub, there is
a natural need to enable search functionality so that users can
quickly target repositories of interest. To accommodate this
need, GitHub introduced topic labels1 which allowed users
to declare topics for their own repositories. However, topic-
based search on GitHub is still far from ideal. For example,
when searching for repositories related to “phylogenetics”, a
highly relevant repository opentree2 with many stars and
forks does not even show up in the first 10 pages of search

1https://help.github.com/en/articles/about-topics
2https://github.com/OpenTreeOfLife/opentree

results as it does not contain the “phylogenetics” tag. Hence,
to improve the search and analysis of GitHub repositories, a
critical first step is automatic repository classification.

In the process of examining the automatic repository clas-
sification task, we identify three different cases of missing
labels: (1) Missing annotation: the majority of repositories
(73% in our MACHINE-LEARNING dataset and 78% in our
BIOINFORMATICS dataset) have no topic labels at all; (2)
Incomplete annotation: since topic labels can be arbitrarily
general or specific, some repositories may miss coarse-grained
labels while others miss fine-grained ones; (3) Evolving label
space: related GitHub topics tags may not have existed at the
time of creation, so the label is naturally missing. Missing
annotation is the major drive behind automatic classification,
but this also implies that labeled data is scarce and expen-
sive to obtain. Incomplete annotation reflects the hierarchical
relationship between labels: repositories should not only be
assigned to labels of one level of granularity, but correspond
to a path in the class hierarchy. Finally, the evolving label
space requires the classification algorithm to quickly adapt to
a new label space, or take the label space as part of the input.
Combining these observations, we define our task as keyword-
driven hierarchical classification for GitHub repositories. By
keyword-driven, we imply that we are performing classifica-
tion using only a few keywords as supervision.

Compared to the common setting of fully-supervised classi-
fication of text documents, keyword-driven hierarchical classi-
fication of GitHub repositories poses unique challenges. First
of all, GitHub repositories are complex objects with metadata,
user interaction and textual description. As a result, multi-
modal signals can be utilized for topic classification, including
user ownership information, existing tags and README text.
To jointly model structured and unstructured data, we propose
to construct a heterogeneous information network (HIN) cen-
tered upon words. By learning node embeddings in this HIN,
we obtain word representations that reflect the co-occurrence
of multi-modal signals that are unique to the GitHub repository
dataset. We also face the supervision scarcity and bias problem
as users only provide one keyword for each class as guidance.
This single keyword may reflect user’s partial knowledge of
the class and may not achieve good coverage of the class
distribution. In face of this challenge, we introduce a keyword
enrichment module that expands the single keyword to a



keyword set for each category. The newly selected keywords
are required to be close to the target class in the embedding
space. Meanwhile, we keep mutual exclusivity among keyword
sets so as to create a clear separation boundary. Finally, while
users provide a label hierarchy, the classification algorithm
ultimately operates on repositories, so there is a mismatch
in the form of supervision. Since we already encode the
structured information through the HIN embeddings, in our
final classification stage we represent each repository as a
document. To transform keywords into documents, we first
model each class as a topic distribution over words and
estimate the distribution parameters. Then based on the topic
distributions, we follow a two-step procedure to generate
pseudo documents for training. This also allows us to employ
powerful classifiers such as CNNs for classification, which
would not be possible with the scarce labels.

To summarize, we have the following contributions:
• We present the task of keyword-driven hierarchical classi-

fication of GitHub repositories. While GitHub has been of
widespread interest to the research community, no previ-
ous efforts have been devoted to the task of automatically
assigning topic labels to repositories, which can greatly
facilitate repository search and analysis. To deal with the
evolving hierarchical label space and circumvent expen-
sive annotation efforts, we only rely on the user-provided
label hierarchy and keywords to train the classifier.

• We design the HIGITCLASS framework, which consists
of three modules: HIN construction and embedding; key-
word enrichment; topic modeling and pseudo document
generation. The three modules are carefully devised to
overcome three identified challenges of our problem: the
presence of multi-modal signals; supervision scarcity and
bias; supervision format mismatch.

• We collect two datasets of GitHub repositories from the
machine learning and bioinformatics research community.
On both datasets we show that our proposed framework
HIGITCLASS outperforms existing supervised and semi-
supervised models for hierarchical classification.

The remainder of this paper is organized as follows. In Section
II, we formally introduce our problem definition, multi-modal
signals in a GitHub repository and heterogeneous information
networks. In Section III, we elaborate our framework HIG-
ITCLASS with its three components. Then in Section IV, we
present experimental results and discuss our findings. Section
V covers related literature and we conclude in Section VI.

II. PRELIMINARIES

A. Problem Definition

We study hierarchical classification of GitHub repositories
where the categories form a tree structure. Traditional hierar-
chical classification approaches [7], [19] rely on a large set of
labeled training documents. In contrast, to tackle the evolving
label space and alleviate annotation efforts, we formulate our
task as keyword-driven classification, where users just need
to provide the label hierarchy and one keyword for each
leaf category. This bears some similarities with the dataless
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Fig. 1. A sample GitHub repository with the user’s name, the repository
name, description tags, and README (only the first paragraph is shown).

classification proposed in [33] that utilizes an user-defined
label hierarchy and class descriptions. There is no requirement
of any labeled repository. Formally, our task is defined as
follows.

Problem Definition. (KEYWORD-DRIVEN HIERARCHICAL
CLASSIFICATION.) Given a collection of unlabeled GitHub
repositories, a tree-structured label hierarchy T and one
keyword wi0 for each leaf class Ci (i = 1, ...,L), our task
is to assign appropriate category labels to the repositories,
where the labels can be either a leaf or an internal node in
T .

B. GitHub Repositories

Fig. 1 shows a sample GitHub repository3. With the help
of GitHub API4, we are able to extract comprehensive infor-
mation of a repository including metadata, source code and
team dynamics. In HIGITCLASS, we utilize the following
information:

User. Users usually have consistent interests and skills. If two
repositories share the same user (“Natsu6767” in Fig. 1), they
are more likely to have similar topics (e.g., deep learning or
image generation).

Name. If two repositories share the same name, it is likely
that one is forked from the other and they should belong to
the same topic category. Besides, indicative keywords can be
obtained by segmenting the repository name properly (e.g.,
“DCGAN” and “PyTorch” in Fig. 1).

Description. The description is a concise summary of the
repository. It usually contains topic-indicating words (e.g.,
“DCGAN” and “CelebA” in Fig. 1).

Tags. Although a large proportion of GitHub repositories are
not tagged, when available, tags are strong indicators of a
repository’s topic (e.g., “dcgan” and “generative-model” in
Fig. 1).

3https://github.com/Natsu6767/DCGAN-PyTorch
4https://developer.github.com/v3/
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Fig. 2. The HIGITCLASS framework. Three key modules (i.e., HIN encoding, keyword enrichment, and pseudo document generation) are used to tackle the
aforementioned three challenges, respectively.

README. The README file is the main source of textual
information in a repository. In contrast to the description, it
elaborates more on the topic but may also diverge to other
issues (e.g., installation processes and code usages). The latter
introduces noises to the task of topic inference.

We concatenate the description and README fields into a
single Document field, which serves as the textual feature of
a repository.

C. Heterogeneous Information Networks
In our proposed framework HIGITCLASS, we model the

multi-modal signals of GitHub repositories as a heterogeneous
information network (HIN) [34], [35]. HINs are an extension
of homogeneous information networks to support multiple
node types and edge types. We formally define a heteroge-
neous information network as below:
Heterogeneous Information Network (HIN). An HIN is
defined as a graph G = (V, E) with a node type mapping
φ : V → TV and an edge type mapping ψ : E → TE . Either
the number of node types |TV | or the number of relation types
|TE | is larger than 1.

As we all know, one advantage of networks is the ability to
go beyond direct links and model higher-order relationships
which can be captured by paths between nodes. We introduce
the notion of meta-paths, which account for different edge
types in HINs.
Meta-Path. In an HIN, meta-paths [35] are an abstraction
of paths proposed to describe multi-hop relationships. For an
HIN G = (V, E), a meta-path is a sequence of edge types
M = E1-E2-...-EL (Ei ∈ TE ). Any path that has the same
types as the meta-path is an instance of the meta-path. When
edge types are a function of the node types, we also represent
a meta-path asM = V1-V2-...-VL (Vi ∈ TV and Vi-Vi+1 ∈ TE
for any i).

III. METHOD

We lay out our HIGITCLASS framework in Fig. 2. HIGIT-
CLASS consists of three key modules, which are proposed to
solve the three challenges mentioned in Introduction, respec-
tively.

To deal with multi-modal signals, we propose an HIN
encoding module (Section III-A). Given the label hierarchy
and keywords, we first construct an HIN to characterize
different kinds of connections between words, documents,
users, tags, repository names and labels. Then we adopt ESIM
[31], a meta-path guided heterogeneous network embedding
technique, to obtain good node representations.

To tackle supervision scarcity and bias, we introduce a key-
word enrichment module (Section III-B). This module expands
the user-specified keyword to a semantically concentrated
keyword set for each category. The enriched keywords are
required to share high proximity with the user-given one from
the view of embeddings. Meanwhile, we keep mutual exclu-
sivity among keyword sets so as to create a clear separation
boundary.

To overcome supervision format mismatch, we present a
pseudo-document generation technique (Section III-C). We
first model each class as a topic distribution over words
and estimate the distribution parameters. Then based on the
topic distributions, we follow a two-step procedure to generate
pseudo documents for training. This step allows us to employ
powerful classifiers such as convolutional neural network [16].
Intuitively, the neural classifier is fitting the learned word
distributions instead of a small set of keywords, which can
effectively prevent it from overfitting.

A. HIN Construction and Embedding

HIN Construction. The first step of our model is to con-
struct an HIN that can capture all the interactions between
different types of information regarding GitHub repositories.
We include six types of nodes: words (W ), documents (D),
users (U ), tags (T ), tokens segmented from repository names
(N ) and labels (L). There is a one-to-one mapping between
documents (D) and repositories (R), thus document nodes may
also serve as a representation of its corresponding repository in
the network. Since the goal of this module is to learn accurate
word representations for the subsequent classification step, we
adopt a word-centric star schema [36], [37]. The schema is
shown in Fig. 3(a). We use a sample ego network of the word
“DCGAN” to help illustrate our schema (Fig. 3(b)). The word
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Fig. 3. Our HIN schema and a sample network under the schema. The five
edge types characterize different kinds of second-order proximity between
words.

vocabulary is the union of words present in the documents,
tags, segmented repository names and user-provided keywords.

Following the star schema, we then have 5 types of edges
in the HIN that represent 5 types of word co-occurrences:

(1) W–D. The word-document edges describe document-
level co-occurrences, where the edge weight between word wi

and document dj indicates the number of times wi appears in
dj (i.e., term frequency, or tf(wi, dj)). From the perspective of
second-order proximity [38], W–D edges reflect the fact that
two words tend to have similar semantics when they appear
in the same repository’s document.

(2) W–U . We add an edge between a word and a user node
if the user is the owner of a repository that contains the word
in its document field. The edge weight between word wi and
user uj is the sum of the term frequency of the word w in
each of the user’s repositories:∑

k: document dk belongs to user uj

tf(wi, dk).

(3) W–T . The word-tag relations encode tag-level word co-
occurrences. The edge weight between word wi and tag tj is∑

k: document dk has tag tj

tf(wi, dk).

(4) W–N . We segment the repository name using “-”, “ ”
and whitespace as separators. For example, we obtain two
tokens “DCGAN” and “PyTorch” by segmenting the repository
name “DCGAN-PyTorch” in Fig. 1. The edge weight between
word wi and name token nj also defined through term
frequency: ∑

k: document dk has name token nj

tf(wi, dk).

(5) W–L. The word-label relations describe category-
level word co-occurrences. Only user-provided keywords will
be linked with label nodes and its parents. For example,
if we select “DCGAN” as the keyword of a (leaf) cate-
gory “$IMAGE-GENERATION”, “DCGAN” will have links to
“$IMAGE-GENERATION” and all of its parent categories (e.g.,
“$COMPUTER-VISION”).

HIN Embedding. Once we have an HIN, we proceed to learn
representations for nodes in the network. Then the embedding
vectors of word nodes can be applied for repository topic
classification.

There are many popular choices for network representation
learning on HINs, such as METAPATH2VEC [6] and HIN2VEC
[9]. We adopt ESIM [31] as our HIN embedding algorithm as
it achieves the best performance in our task. (We will validate
this choice in Section IV-C.) Random walk based methods
[11], [27] have enjoyed success in learning node embeddings
on homogeneous graphs in a scalable manner. ESIM adapts
the idea for use on HINs, and restricts the random walk under
guidance of user-specified meta-paths. In HIGITCLASS, we
choose W–D–W , W–U–W , W–T–W , W–N–W and W–
L–W as our meta-paths, modeling the five different types of
second-order proximity between words.

Following the selected meta-paths, we can sample a large
number of meta-path instances in our HIN (e.g., W–D–W is
a valid node sequence, while D–W–D is not). Given a meta-
pathM and its corresponding node sequence P = u1–u2–...–
ul, we assume that the probability of observing a path given a
meta-path constraint follows that of a first-order Markov chain:

Pr(P|M) = Pr(u1|M)

l−1∏
i=1

Pr(ui+1|ui,M),

where

Pr(v|u,M) =
exp(f(u, v,M))∑

v′∈V exp(f(u, v′,M))
(1)

and

f(u, v,M) = µM + pTMeu + qTMev + eTu ev.

Here, µM is the global bias of meta-pathM. pM and qM are
d-dimensional local bias of M. eu and ev are d-dimensional
embedding vectors of nodes u and v, respectively. eu, ev ,
pM, qM and µM can be learned through maximizing the
likelihood.

However, the denominator in Equation (1) requires summing
over all nodes, which is very computationally expensive given
the large network size. In our actual computation, we estimate
this term through negative sampling [24].

Pr(v|u,M) =
exp(f(u, v,M))∑

v′∈V − exp(f(u, v′,M)) + exp(f(u, v,M))
,

where V − is the set of nodes that serve as negative samples.

B. Keyword Enrichment

Since we only ask users to provide one keyword for each
category, in case of scarcity and bias, we devise a keyword
enrichment module to automatically expand the single key-
word wi0 the a keyword set Ki = {wi0, wi1, ..., wiKi

} so as
to better capture the semantics of the category.

From the HIN embedding step, we have obtained the
embedding vector ew for each word w. We perform nor-
malization so that all embedding vectors reside on the unit
sphere (i.e., ew ← ew/||ew||). Then the inner product of
two embedding vectors eTw1

ew2
is adopted to characterize the

proximity between two words w1 and w2. For each class
Ci, we add words sharing the highest proximity with wi0

into its enriched keyword set. Meanwhile, to create a clear



Algorithm 1 KEYWORDENRICH(w10, ..., wL0)
1: Ki = {wi0}, i = 1, ...,L
2: wi,last = wi0, i = 1, ...,L
3: while Ki ∩ Kj = ∅ (∀i, j) do
4: for i = 1 to L do
5: wi,last = arg maxw/∈Ki

eTw0i
ew

6: Ki = Ki ∪ {wi,last}
7: end for
8: end while
9: Ki = Ki/{wi,last}, i = 1, ...,L //Remove the last added

keyword to keep mutual exclusivity
10: output K1, ...,KL

separation boundary between categories, we require K1, ...,KL
to be mutually exclusive. Therefore, the expansion process
terminates when any two of the keyword sets tend to intersect.
Algorithm 1 describes the process.

Note that on a unit sphere, the inner product is a re-
verse measure of the spherical distance between two points.
Therefore, we are essentially expanding the keyword set with
the nearest neighbors of the given keyword. The termination
condition is that two “neighborhoods” have overlaps.

C. Topic Modeling and Pseudo Document Generation

To leverage keywords for classification, we face two prob-
lems: (1) a typical classifier needs labeled repositories as
input; (2) although the keyword sets have been enriched, a
classifier will likely be overfitted if it is trained solely on
these keywords. To tackle these issues, we assume we can
generate a training document d̃ for class Ci given Ki through
the following process:

q(d̃|C) = q(d̃|Θi)p(Θi|Ki).

Here q(·|Θi) is the topic distribution of Ci parameterized by
Θi, with which we can “smooth” the small set of keywords Ki

to a continuous distribution. For simplicity, we adopt a “bag-
of-words” model for the generated documents, so q(d̃|Θi) =∏|d̃|

i=0 q(wi|Θi). Then we draw samples of words from q(·|Θi)
to form a pseudo document following the technique proposed
in [22].

Spherical Topic Modeling. Given the normalized embed-
dings, we characterize the word distribution for each category
using a mixture of von Mises-Fisher (vMF) distributions [1],
[10]. To be specific, the probability to generate keyword w
from category Ci is defined as

q(w|Ci) =

m∑
j=1

αjf(ew|µj , κj) =

m∑
j=1

αjcp(κj) exp(κjµ
T
j ew),

where f(ew|µj , κj), as a vMF distribution, is the j-th com-
ponent in the mixture with a weight αj . The vMF distribution
can be interpreted as a normal distribution confined to a unit
sphere. It has two parameters: the mean direction vector µi

and the concentration parameter κi. The keyword embeddings

concentrate around µi, and are more concentrated if κi is large.
cp(κi) is a normalization constant.

Following [23], we choose the number of vMF components
differently for leaf and internal categories: (1) For a leaf
category Cj , the number of components m is set to 1 and the
mixture model degenerates to a single vMF distribution. (2)
For an internal category Cj , we set the number of components
to be the number of Cj’s children in the label hierarchy.

Given the enriched keyword set Kj , we can derive µj

and κj using Expectation Maximization (EM) [1]. Recall that
the keywords of an internal category are aggregated from
its children categories. In practice, we use the approximation
procedure based on Newton’s method [1] to derive κj .
Pseudo Document Generation. To generate a pseudo docu-
ment d̃ for Cj , we first sample a document vector ed̃ from
f(·|Cj). Then we build a local vocabulary Vd̃ that contains
top-τ words similar with d̃ in the embedding space. (τ = 50
in our model.) Given Vd̃, we repeatedly generate a number of
words from a background distribution with probability β and
from the document-specific distribution with probability 1−β.
Formally,

Pr(w|d̃) =

βpB(w), w /∈ Vd̃
βpB(w) + (1− β)

exp(eTwed̃)∑
w′∈V

d̃
exp(eT

w′ed̃)
, w ∈ Vd̃

where pB(w) is the background distribution (i.e., word distri-
bution in the entire corpus).

Here we generate the pseudo document in two steps: first
sampling the document vector and then sampling words from
a mixture of the document language model and a background
language model. Compared to directly sampling words from
f(·|Cj), the two-step process ensures better coverage of the
class distribution. In direct sampling, with high probability
we will include words that are close to the centroid of the
topic Cj . The classifier may learn to ignore all other words
and use only these words to determine the predicted class. By
first sampling the document vector, we would like to lead the
classifier to learn that all documents that fall within the topic
distribution belong to the same class.

The synthesized pseudo documents are then used as training
data for a classifier. In HIGITCLASS, we adopt convolutional
neural networks (CNN) [16] for the classification task. One
can refer to [16], [22] for more details of the network
architecture. The embedding vectors of word nodes obtained
by ESIM in the previous HIN module are used as pre-trained
embeddings.

Recall the process of generating pseudo documents, if we
evenly split the fraction of the background distribution into
the m children categories of Cj , the “true” label distribution
(an m-dimensional vector) of a pseudo document d̃ can be
defined as

label(d̃)i =

{
(1− β) + β/m, d̃ is generated from child i
β/m. otherwise

Since our label is a distribution instead of a one-hot vector,
we compute the loss as the KL divergence between the output
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Fig. 4. Label hierarchy and provided keywords (in blue) on the two datasets.

label distribution and the pseudo label.

IV. EXPERIMENTS

We aim to answer two questions in our experiments. First,
does HIGITCLASS achieve supreme performance in compari-
son with various baselines (Section IV-B)? Second, we propose
three key modules in HIGITCLASS. How do they contribute to
the overall performance? (The effects of these three modules
will be explored one by one in Sections IV-C, IV-D and IV-E).

A. Experimental Setup

Datasets. We collect two datasets of GitHub repositories
covering different domains.5 Their statistics are summarized
in Table I.

TABLE I
DATASET STATISTICS.

Dataset #Repos #Classes (Level 1 + Level 2)
MACHINE-LEARNING 1,596 3 + 14

BIOINFORMATICS 876 2 + 10

• MACHINE-LEARNING. This dataset is collected by the
Paper With Code project6. It contains a list of GitHub
repositories implementing state-of-the-art algorithms of
various machine learning tasks, where the tasks are
organized as a taxonomy.

• BIOINFORMATICS. This dataset is extracted from re-
search articles published on four venues Bioinformatics,
BioNLP, MICCAI and Database from 2014 to 2018. In
each article, authors may put a code link, and we extract
the links pointing to a GitHub repository. Meanwhile,
each article has an issue section, which is viewed as the
topic label of the associated repository.

Note that more than 73% (resp., 78%) of the repositories in
our MACHINE-LEARNING (resp., BIOINFORMATICS) dataset
have no tags.
Baselines. We evaluate the performance of HIGITCLASS
against the following hierarchical classification algorithms:

5Our code and datasets are available at https://github.com/
yuzhimanhua/HiGitClass.

6https://paperswithcode.com/media/about/evaluation-tables.json.gz

• HierSVM [7] decomposes the training tasks according to
the label taxonomy, where each local SVM is trained to
distinguish sibling categories that share the same parent
node.7

• HierDataless [33] embeds both class labels and doc-
uments in a semantic space using Explicit Semantic
Analysis on Wikipedia articles, and assigns the nearest
label to each document in the semantic space.8 Note that
HierDataless uses Wikipedia as external knowledge in
classification, whereas other baselines and HIGITCLASS
solely reply on user-provided data.

• WeSTClass [22] first generates pseudo documents and
then trains a CNN based on the synthesized training
data.9

• WeSHClass [23] leverages a language model to generate
synthesized data for pre-training and then iteratively
refines the global hierarchical model on labeled docu-
ments.10

• PCNB [41] utilizes a path-generated probabilistic frame-
work on the label hierarchy and trains a path-cost sensi-
tive naive Bayes classifier.11

• PCEM [41] makes use of the unlabeled data to amelio-
rate the path-cost sensitive classifier and applies an EM
technique for semi-supervised learning.

Note that HierSVM, PCNB and PCEM can only take
document-level supervision (i.e., labeled repositories). To align
the experimental settings, we first label all the repositories
using TFIDF scores by treating the keyword set of each class
as a query. Then, we select top-ranked repositories per class
as the supervision to train HierSVM, PCNB and PCEM. Since
the baselines are all text classification approaches, we append
the information of user, tags and repository name to the end
of the document for each repository so that the baselines can
exploit these signals.

7https://github.com/globality-corp/sklearn-hierarchical-classification
8https://github.com/yqsong/DatalessClassification
9https://github.com/yumeng5/WeSTClass
10https://github.com/yumeng5/WeSHClass
11https://github.com/HKUST-KnowComp/PathPredictionForTextClassifica-

tion



TABLE II
PERFORMANCE OF COMPARED ALGORITHMS ON THE MACHINE-LEARNING DATASET. HIERDATALESS DOES NOT HAVE A STANDARD DEVIATION SINCE

IT IS A DETERMINISTIC ALGORITHM.

Method Level-1 Micro Level-1 Macro Level-2 Micro Level-2 Macro Overall Micro Overall Macro
HierSVM [7] 54.20 ± 4.53 46.58 ± 3.59 27.40 ± 3.55 31.99 ± 5.34 40.80 ± 1.20 34.57 ± 3.94

HierDataless [33] 76.63 33.44 13.72 8.80 45.18 13.15
WeSTClass [22] 61.78 ± 3.90 48.00 ± 2.04 37.71 ± 2.72 34.34 ± 1.70 49.75 ± 3.24 36.75 ± 1.67
WeSHClass [23] 70.69 ± 2.14 52.73 ± 2.18 38.08 ± 2.07 33.87 ± 2.23 54.39 ± 2.11 37.60 ± 1.67

PCNB [41] 77.79 ± 1.92 62.53 ± 2.55 26.77 ± 3.89 22.85 ± 1.98 52.28 ± 1.92 29.85 ± 1.74
PCEM [41] 77.28 ± 2.00 59.27 ± 2.29 22.34 ± 4.02 19.28 ± 2.25 49.81 ± 2.00 26.34 ± 1.83

HIGITCLASS W/O HIN 75.28 ± 6.99 60.85 ± 5.51 40.21 ± 2.91 39.77 ± 2.22 57.74 ± 4.07 43.49 ± 2.10
HIGITCLASS W/O ENRICH 86.48 ± 1.41 72.19 ± 2.53 36.71 ± 1.13 43.75 ± 2.85 61.60 ± 0.25 48.77 ± 1.94

HIGITCLASS W/O HIER 57.31 ± 1.63 59.30 ± 3.14 40.45 ± 2.51 44.41 ± 2.66 48.88 ± 2.07 47.04 ± 1.63
HIGITCLASS 87.68 ± 2.23 72.06 ± 4.39 43.93 ± 2.93 45.97 ± 2.29 65.81 ± 3.55 50.57 ± 2.98

TABLE III
PERFORMANCE OF COMPARED ALGORITHMS ON THE BIOINFORMATICS DATASET. HIERDATALESS DOES NOT HAVE A STANDARD DEVIATION SINCE IT IS

A DETERMINISTIC ALGORITHM.

Method Level-1 Micro Level-1 Macro Level-2 Micro Level-2 Macro Overall Micro Overall Macro
HierSVM [7] 80.39 ± 2.72 70.16 ± 6.05 13.49 ± 10.2 10.04 ± 9.07 46.94 ± 4.66 20.06 ± 7.12

HierDataless [33] 81.39 78.75 39.27 36.57 60.33 43.60
WeSTClass [22] 61.78 ± 5.75 52.73 ± 4.86 20.39 ± 3.48 17.52 ± 2.59 41.09 ± 4.28 23.91 ± 2.82
WeSHClass [23] 63.17 ± 3.56 59.65 ± 3.51 26.44 ± 1.33 24.94 ± 0.98 44.80 ± 2.26 30.72 ± 1.30

PCNB [41] 77.03 ± 2.89 59.43 ± 3.51 31.77 ± 3.80 22.90 ± 4.84 54.40 ± 2.89 28.99 ± 4.82
PCEM [41] 78.51 ± 3.06 61.99 ± 4.18 32.80 ± 2.88 18.93 ± 5.28 55.66 ± 3.06 26.11 ± 5.41

HIGITCLASS W/O HIN 66.21 ± 8.33 64.39 ± 7.00 31.87 ± 3.65 30.47 ± 3.15 49.04 ± 5.75 36.13 ± 3.52
HIGITCLASS W/O ENRICH 54.55 ± 10.0 53.57 ± 9.15 22.95 ± 1.46 23.18 ± 1.89 38.74 ± 4.30 28.24 ± 0.87

HIGITCLASS W/O HIER 78.79 ± 2.57 73.71 ± 2.28 39.42 ± 4.47 41.58 ± 2.63 59.10 ± 3.51 46.94 ± 2.48
HIGITCLASS 81.71 ± 3.95 77.11 ± 3.89 42.44 ± 8.46 41.67 ± 8.04 62.08 ± 6.11 47.57 ± 7.34

Besides the baselines, we also include the following three
ablation versions of HIGITCLASS into comparison.
• w/o HIN skips the HIN embedding module and relies

on word2vec [24] to generate word embeddings for the
following steps.

• w/o Enrich skips the keyword enrichment module and
directly uses one single keyword in spherical topic mod-
eling.

• w/o Hier directly classifies all repositories to the leaf
layer and then assigns internal labels to each repository
according to its leaf category.

Evaluation Metrics. We use F1 scores to evaluate the per-
formance of all methods. Denote TPi, FPi and, FNi as
the instance numbers of true-positive, false-positive and false
negative for category Ci. Let T1 (resp., T2) be the set of all
Level-1 (resp., Level-2/leaf) categories. The Level-1 Micro-
F1 is defined as 2PR

P+R , where P =
∑

Ci∈T1
TPi∑

Ci∈T1
(TPi+FPi)

and

R =
∑

Ci∈T1
TPi∑

Ci∈T1
(TPi+FNi)

. The Level-1 Macro-F1 is defined

as 1
|T1|

∑
Ci∈T1

2PiRi

Pi+Ri
, where Pi = TPi

TPi+FPi
and Ri =

TPi

TPi+FNi
. Accordingly, Level-2 Micro/Macro-F1 and Overall

Micro/Macro-F1 can be defined on T2 and T1 ∪ T2.

B. Performance Comparison with Baselines
Tables II and III demonstrate the performance of compared

methods on two datasets. We repeat each experiment 5 times
(except HierDataless, which is a deterministic algorithm) with
the mean and standard deviation reported.

As we can observe from Tables II and III, on both datasets,
a significant improvement is achieved by HIGITCLASS com-

pared to the baselines. On MACHINE-LEARNING, HIGIT-
CLASS notably outperforms the second best approach by
22.1% on average. On BIOINFORMATICS, the only metric
in terms of which HIGITCLASS does not perform the best
is Level-1 Macro-F1, and the main opponent of HIGIT-
CLASS is HierDataless. As mentioned above, HierDataless
incorporates Wikipedia articles as its external knowledge.
When user-provided keywords can be linked to Wikipedia
(e.g., “genomic”, “genetic” and “phylogenetic” in BIOINFOR-
MATICS), HierDataless can exploit the external information
well. However, when the keywords cannot be wikified (e.g.,
names of new deep learning algorithms such as “dcgan”,
“rcnn” and “densenet” in MACHINE-LEARNING), the help
from Wikipedia is limited. In fact, on MACHINE-LEARNING,
HierDataless performs poorly. Note that on GitHub, it is
common that names of recent algorithms or frameworks are
provided as keywords.

Besides outperforming baseline approaches, HIGITCLASS
shows a consistent and evident improvement against three
ablation versions. The average boost of the HIN module over
the six metrics is 15.0% (resp., 28.6%) on the MACHINE-
LEARNING (resp., BIOINFORMATICS) dataset, indicating the
importance of encoding multi-modal signals on GitHub. The
Level-1 F1 scores of HIGITCLASS W/O ENRICH is close to
the full model on MACHINE-LEARNING, but the keyword en-
richment module demonstrates its power when we go deeper.
This finding is aligned with the fact that the topic distributions
of coarse-grained categories are naturally distant from each
other on the sphere. Therefore, one keyword per category
may be enough to estimate the distributions approximately.
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Fig. 5. Performance of algorithms with different HIN modules.

However, when we aim at fine-grained classification, the topic
distributions become closer, and the inference process may
be easily interfered by a biased keyword. HIGITCLASS W/O
HIER performs poorly on MACHINE-LEARNING, which high-
lights the importance of utilizing the label hierarchy during
the training process. The same phenomenon occurs in the
comparison between WeSTClass and WeSHClass.

C. Effect of HIN Construction and Embedding

We have demonstrated the contribution of our HIN module
by comparing HIGITCLASS and HIGITCLASS W/O HIN. To
explore the effectiveness of HIN construction and embedding
in a more detailed way, we perform an ablation study by
changing one “factor” in the HIN and fixing all the other
modules in HIGITCLASS. To be specific, our HIN has five
types of edges, each of which corresponds to a meta-path. We
consider five ablation versions (No W-D-W, No W-U-W, No
W-T-W, No W-N-W and No W-L-W). Each version ignores
one edge type/meta-path. Moreover, given the complete HIN,
we consider to use two popular approaches, METAPATH2VEC
[6] and HIN2VEC [9], as our embedding technique, which
generates two variants metapath2vec as embedding and
HIN2vec as embedding. Fig. 5 shows the performance of
these variants and our Full model.

We have the following findings from Fig. 5. First, our
FULL model outperforms the five ablation models ignoring
different edge types, indicating that each meta-path (as well
as each node type incorporated in the HIN construction step)
plays a positive role in classification. Second, our FULL model
outperforms METAPATH2VEC AS EMBEDDING and HIN2VEC
AS EMBEDDING in most cases, which validates our choice of
using ESIM as the embedding technique. The possible reason
that ESIM is more suitable for our task may be that we
have a simple word-centric star schema and a clear goal of
embedding word nodes. Therefore, the choices of meta-paths
can be explicitly specified (i.e., W–?–W ) and do not need
to be inferred from data (as HIN2VEC does). Third, among
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Fig. 6. Performance of HIGITCLASS with different numbers of pseudo
documents.

the five ablation models ignoring edge types, NO W-U-W
performs the worst on MACHINE-LEARNING, which means
W -U edges (i.e., the user information) contribute the most
in repository classification. Meanwhile, on BIOINFORMATICS,
W -T edges have the largest offering. This can be explained by
the following statistics: in the MACHINE-LEARNING dataset,
348 pairs of repositories share the same user, out of which
217 (62%) have the same leaf label; in the BIOINFORMATICS
dataset, there are 356 pairs of repositories having at least two
overlapping tags, among which 221 (62%) belong to the same
leaf category. Fourth, W -D edges also contribute a lot to the
performance. This observation is aligned with the results in
[37], where document-level word co-occurrences play a crucial
role in text classification.

D. Effect of Keyword Enrichment

Quantitatively, the keyword enrichment module has a posi-
tive contribution to the whole framework according to previous
experiments. We now show its effect qualitatively. Table IV
lists top-5 words selected by HIGITCLASS during keyword
enrichment. Besides topic-indicating words (e.g., “tagger”,
“trait”, “trees”, etc.), popular algorithm/tool names (e.g.,
“bidaf ” and “pymol”), dataset names (e.g., “mpii”, “pdb”) and
author names (e.g., “papandreou” and “lample”) are also in-
cluded in the expanded keyword set. Note that some provided
keywords are more or less ambiguous (e.g., “segmentation”
and “structure”), and directly using them for topic modeling
may introduce noises. In contrast, the expanded set as a whole
can better characterize the semantics of each topic category.

E. Effect of Pseudo Documents

In all previous experiments, when we build a classifier for
an internal category Ci, we generate 500 pseudo documents
for each child of Ci. What if we use less/more synthesized
training data? Intuitively, if the amount of generated pseudo
documents is too small, signals in previous modules cannot
fully propagate to the training process. On the contrary, if
we have too many generated data, the training time will be
unnecessarily long. To see whether 500 is a good choice, we
plot the performance of HIGITCLASS with 10, 50, 100, 500,
1000 and 2000 pseudo documents in Fig. 6.

On the one side, when the number of pseudo documents
is too small (e.g., 10, 50 or 100), information carried in
the synthesized training data will be insufficient to train a
good classifier. On the other side, when we generate too



TABLE IV
ENTITY ENRICHMENT RESULTS ON THE TWO DATASETS. FOUR LEAF CATEGORIES ARE SHOWN FOR EACH DATASET.

Class $SEMANTIC-SEGMENTATION $POSE-ESTIMATION $NAMED-ENTITY-RECOGNITION $QUESTION-ANSWERING
Keyword segmentation pose ner squad

Enriched
Keywords

semantic estimation entity question
papandreou person tagger answering

scene human lample bidaf
pixel mpii - -

segment 3d - -
Class $GENE-EXPRESSION $GENETICS-AND-POPULATION $STRUCTURAL-BIOINFORMATICS $PHYLOGENETICS

Keyword expression genetic structure phylogenetic

Enriched
Keywords

gene traits protein trees
genes trait pdb newick

rna markers residues phylogenetics
cell phenotypes pymol phylogenies

isoform associations residue evolution

many pseudo documents (e.g, 1000 or 2000), putting efficiency
aside, the performance is not guaranteed to increase. In fact, on
both datasets, the F1 scores start to fluctuate when the number
of pseudo documents becomes large. In our task, generating
500 to 1000 pseudo documents for each class will strike a
good balance.

V. RELATED WORK

GitHub Repository Mining. As a popular code collabo-
ration community, GitHub presents many opportunities for
researchers to learn how people write code and design tools
to support the process. As a result, GitHub data has received
attention from both software engineering and social comput-
ing researchers. Analytic studies [5], [15], [21], [29], [39],
[40] have investigated how user activities (e.g., collaboration,
following and watching) affect development practice. Algo-
rithmic studies [8], [28], [32], [44] exploit README files
and repository metadata to perform data mining tasks such
as similarity search [44] and clustering [32]. In this paper,
we focus on the task of automatically classifying repositories
whereas previous works [15], [29] have relied on human effort
to annotate each repository with its topic.

HIN Embeddings. Many node embeddings techniques have
been proposed for HIN, including [6], [9], [31], [42]. From the
application point of view, typical applications of learned em-
beddings include node classification [6], [9], [31], [42], node
clustering [6] and link prediction [9], [42]. Several studies
apply HIN node embeddings into downstream classification
tasks, such as malware detection [13] and medical diagnosis
[12]. Different from the fully-supervised settings in [12], [13],
our repository classification task relies on a very small set
of guidance. Moreover, most information used in [12], [13]
is structured. In contrast, we combine structured information
such as user-repository ownership relation with unstructured
text for classification.

Dataless Text Classification. Although deep neural architec-
tures [14], [16], [43] demonstrate their advantages in fully-
supervised text classification, their requirement of massive
training data prohibits them from being adopted in some prac-
tical scenarios. Under weakly-supervised or dataless settings,

there have been solutions following two directions: latent
variable models extending topic models (e.g., PLSA and LDA)
by incorporating user-provided seed information [4], [17],
[18], [20] and embedding-based models deriving vectorized
representations for words and documents [3], [22], [37]. There
are also some work on semi-supervised text classification [25],
[30], but they require a set of labeled documents instead of
keywords.

Hierarchical Text Classification. Under fully-supervised set-
tings, [7] and [19] first propose to train SVMs to distinguish
the children classes of the same parent node. [2] further defines
hierarchical loss function and applies cost-sensitive learning
to generalize SVM learning for hierarchical classification.
[26] proposes a graph-CNN based model to convert text to
graph-of-words, on which the graph convolution operations
are applied for feature extraction. Under weakly-supervised
or dataless settings, previous approaches include HierDataless
[33], WeSHClass [23] and PCNB/PCEM [41], which have
been introduced in Section IV-A. All above mentioned studies
focus on text data without additional information. In HIGIT-
CLASS, we are able to go beyond plain text classification and
utilize multi-modal signals.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the problem of keyword-
driven hierarchical classification of GitHub repositories: the
end user only needs to provide a label hierarchy and one
keyword for each leaf category. Given such scarce supervision,
we design HIGITCLASS with three modules: heterogeneous
information network embedding; keyword enrichment; pseudo
document generation. Specifically, HIN embeddings take ad-
vantage of the multi-modal nature of GitHub repositories;
keyword enrichment alleviates the supervision scarcity of
each category; pseudo document generation transforms the
keywords into documents, enabling the use of powerful neural
classifiers. Through experiments on two repository collections,
we show that HIGITCLASS consistently outperforms all base-
lines by a large margin, particularly on the lower levels of
the hierarchy. Further analysis shows that the HIN module
contributes the most to the boost in performance and keyword



enrichment demonstrates its power deeper down the hierarchy
where the differences between classes become more subtle.

For future work, we would like to explore the possibil-
ity of integrating different forms of supervision (e.g., the
combination of keywords and labeled repositories). The HIN
embedding module may also be coupled more tightly with
the document classification process by allowing the document
classifier’s prediction results to propagate along the network.
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