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ABSTRACT

Extracting relations from text corpora is an important task with
wide applications. However, it becomes particularly challenging
when focusing on weakly-supervised relation extraction, that is,
utilizing a few relation instances (i.e., a pair of entities and their re-
lation) as seeds to extract from corpora more instances of the same
relation. Existing distributional approaches leverage the corpus-
level co-occurrence statistics of entities to predict their relations,
and require a large number of labeled instances to learn effective
relation classifiers. Alternatively, pattern-based approaches per-
form boostrapping or apply neural networks to model the local
contexts, but still rely on a large number of labeled instances to
build reliable models. In this paper, we study the integration of
distributional and pattern-based methods in a weakly-supervised
setting such that the two kinds of methods can provide complemen-
tary supervision for each other to build an effective, unified model.
We propose a novel co-training framework with a distributional
module and a pattern module. During training, the distributional
module helps the pattern module discriminate between the informa-
tive patterns and other patterns, and the pattern module generates
some highly-confident instances to improve the distributional mod-
ule. The whole framework can be effectively optimized by iterating
between improving the pattern module and updating the distribu-
tional module. We conduct experiments on two tasks: knowledge
base completion with text corpora and corpus-level relation extrac-
tion. Experimental results prove the effectiveness of our framework
over many competitive baselines.
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1 INTRODUCTION

Relation extraction is an important task in data mining and natural
language processing. Given a text corpus, relation extraction aims at
extracting a set of relation instances (i.e., a pair of entities and their
relation) based on some given examples. Many efforts [7, 22, 26]
have been done on sentence-level relation extraction, where the
goal is to predict the relation for a pair of entities mentioned in a
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Sentence

Beijing , the capital of China, is a megacity rich in history.
Tokyo , Japan ’s capital , was originally a small village .

ID

1

2

Text Corpus

Bill Gates is a co-founder of the Microsoft Corporation .3

Apple is working closely with MS to fix an issue .4

5 Steve Jobs was an American businessman, inventor .

Seed Relation Instances

Weakly-supervised Relation Extraction

Extracted Relation Instances

Beijing China
Capital of

Bill Gates Microsoft
Founder of

Tokyo Japan
Capital of

Steve Jobs Apple
Founder of

Figure 1: Illustration of weakly-supervised relation extrac-

tion. Given a text corpus and a few relation instances as

seeds, the goal is to extract more instances from the corpus.

sentence (e.g., predict the relation between “Beijing” and “China”
in sentence 1 of Fig. 1). Despite its wide applications, these studies
usually require a large number of human-annotated sentences as
training data, which are expensive to obtain. In many cases (e.g.,
knowledge base completion [39]), it is also desirable to extract a
set of relation instances by consolidating evidences from multiple
sentences in corpora, which cannot be directly achieved by these
studies. Instead of looking at individual sentences, corpus-level re-
lation extraction [2, 12, 21, 27, 43] identifies relation instances from
text corpora using evidences from multiple sentences. This also
makes it possible to apply weakly-supervised methods based on
corpus-level statistics [1, 8]. Such weakly-supervised approaches
usually take a few relation instances as seeds, and extract more
instances by consolidating redundant information collected from
large corpora. The extracted instances can serve as extra knowl-
edge in various downstream applications, including knowledge
base completion [27, 34], corpus-level relation extraction [16, 43],
hypernym discovery [30, 31] and synonym discovery [25, 36].

In this paper, we focus on corpus-level relation extraction in the
weakly-supervised setting. There are broadly two types of weakly-
supervised approaches for corpus-level relation extraction. Among
them, pattern-based approaches predict the relation of an entity pair
from multiple sentences mentioning both entities. To do that, tradi-
tional approaches [23, 28, 41] extract textual patterns (e.g., tokens
between a pair of entities) and new relation instances in a boot-
strapping manner. However, many relations could be expressed in a
variety of ways. Due to such diversity, these approaches often have
difficulty matching the learned patterns to unseen contexts, leading
to the problem of semantic drift [8] and inferior performance. For
example, with the given instance “(Beijing, Capital of, China)” in
Fig. 1, “[Head] , the capital of [Tail]” will be extracted as a textual
pattern from sentence 1. But we have difficulty in matching the
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pattern to sentence 2 even though both sentences refer to the same
relation “Capital of ”. Recent approaches [17, 40] try to overcome
the sparsity issue of textual patterns by encoding textual patterns
with neural networks, so that pattern matching can be replaced
by similarity measurement between vector representations. How-
ever, these approaches typically rely on large amount of labeled
instances to train effective models [30], making it hard to deal with
the weakly-supervised setting.

Alternatively, distributional approaches resort to the corpus-
level co-occurrence statistics of entities. The basic idea is to learn
low-dimensional representations of entities to preserve such sta-
tistics, so that entities with similar semantic meanings tend to
have similar representations. With entity representations, a rela-
tion classifier can be learned using the labeled relation instances,
which takes entity representations as features and predicts the re-
lation of a pair of entities. To learn entity representations, some
approaches [19, 24, 33] only consider the given text corpus. Despite
the unsupervised property, their performance is usually limited
due to the lack of supervision [39]. To learn more effective repre-
sentations for relation extraction, some other approaches [37, 39]
jointly learn entity representations and relation classifiers using the
labeled instances. However, similar to pattern-based approaches,
distributional approaches also require considerable amount of rela-
tion instances to achieve good performance [39], which are usually
hard to obtain in the weakly-supervised setting.

The pattern-based and the distributional approaches extract re-
lations from different perspectives, which are naturally comple-
mentary to each other. Ideally, we would wish to integrate both
approaches, so that they can mutually enhance and reduce the re-
liance on the given relation instances. Towards integrating both
approaches, several existing studies [25, 30, 34] try to jointly train
a distributional model and a pattern model using the labeled in-
stances. However, the supervision of their frameworks still totally
comes from the given relation instances, which is insufficient in
the weakly-supervised setting. Therefore, their performance is yet
far from satisfaction, and we are seeking an approach that is more
robust to the scarcity of seed instances.

In this paper, we propose such an approach called REPEL (Re-
lation Extraction with Pattern-enhanced Embedding Learning) to
weakly-supervised relation extraction. Our approach consists of a
pattern module and a distributional module (see Fig. 2). The pattern
module aims at learning a set of reliable textual patterns for relation
extraction; while the distributional module tries to learn a relation
classifier on entity representations for prediction. Different from ex-
isting studies, we follow the co-training [3] strategy and encourage
both modules to provide extra supervision for each other, which
is expected to complement the limited supervision from the given
seed instances (see Fig. 3). Specifically, the pattern module acts as a
generator, as it can extract some candidate instances based on the
discovered reliable patterns; whereas the distributional module is
treated as a discriminator to evaluate the quality of each generated
instance, that is, whether an instance is reasonable. To encourage
the collaboration of both modules, we formulate a joint optimiza-
tion process, in which we iterate between two sub-processes. In
the first sub-process, the discriminator (distributional module) will
evaluate the instances generated by the generator (pattern module),
and the results serve as extra signals to adjust the generator. In
the second sub-process, the generator (pattern module) will in turn
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Figure 2: Illustration of the modules. The pattern module

aims to learn reliable textual patterns for each relation. The

distributional module tries to learn entity representations

and a score function to estimate the quality of each instance.
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Figure 3: Comparisonwith existing integration frameworks.

Existing frameworks totally rely on the seed instances to

provide supervision. Our framework encourages both mod-

ules to provide extra supervision for each other.

generate a set of highly confident instances, which serve as extra
training seeds to improve the discriminator (distributional module).
During training, we keep iterating between the two sub-processes,
so that both modules can be consistently improved. Once the train-
ing converges, both modules can be applied to relation extraction,
which extract new relation instances from different perspectives.

In summary, in this paper we make the following contributions:
• We propose a principled framework to integrate the distribu-
tional and pattern-based methods for weakly-supervised relation
extraction, which is effective in overcoming the scarcity of seeds.
• We develop a joint optimization algorithm for solving the unified
objective, alternating between adjusting the pattern module and
improving the distributional module.
• We conduct experiments on two downstream applications over
two real-world datasets. Experimental results prove the effective-
ness of our framework in the weakly-supervised setting.

2 PROBLEM DEFINITION

In this section, we formally define our problem.

Entity Name. An entity name is a string referring to a real-world
entity, which usually appears in multiple sentences of a corpus. For
example in Fig. 1, all strings with purple colors (e.g., Beijing, Bill
Gates) are valid entity names.

To extract relations between different entities, a prerequisite is
to detect those entity names in text corpora. In this paper, for sim-
plicity, we will not focus on entity name detection. Instead, we will
use existing tools to do that. Specifically, we first apply some named
entity recognition tools [18] to the corpus, which are able to detect
entity names in text. In practice, many detected entity names can re-
fer to the same entity. For example in Fig. 1, “Microsoft” in sentence
3 and “MS” in sentence 4 both refer to Microsoft Corporation. For
entity names representing the same entity, since they have exactly
the same meaning, we may expect to treat them equally instead of
treating them independently. Therefore, we further leverage some
entity linking tools [9], which can link synonymous entity names
to the same entity in an external knowledge (e.g., Freebase). After
entity linking, for each entity, we use a unified id to replace all



entity names referring to that entity. For example, we can use the
Freebase id of the entityMicrosoft Corporation to replace “Microsoft”
and “MS” in Fig. 1.

Relation Instance. A relation instance describes the relation be-
tween a pair of entities. Formally, a relation instance is composed
of an entity pair (eh , et ) and a relation r , meaning that entity eh
and entity et have the relation r .

Relation instances are ubiquitous. For example in Fig. 1 (Beijing,
China) with capital of, (Bill Gates, Microsoft) with founder of are
both valid relation instances. Extracting such instances from text
corpora is an essential task, which has wide applications.

Problem Definition. In this paper, we study weakly-supervised
relation extraction. Specifically, given a text corpus D and some
target relations R, with each target relation r specified by a set

of relation instances {(ehk , etk , r )}Nr

k=1
, our goal is to leverage the

given instances as seeds and extract more instances from the corpus
(Fig. 1). Formally, we define our problem as follows:

Definition 2.1. (ProblemDefinition)Given a text corpusD and

some target relations R, where each target relation r is characterized

by a few seed instances {(ehk , etk , r )}Nr

k=1
or in other words a few

seed entity pairs {(ehk , etk }Nr

k=1
, the weakly-supervised relation ex-

traction task aims to extract more instances {(ehi , eti , ri )}Mi=1 from
the corpus. In other words, we aim at discovering more entity pairs

{(ehi , eti )}Mr

i=1 under each target relation r ∈ R.

3 THE REPEL FRAMEWORK

3.1 Framework Overview

In this section, we introduce our approach to weakly-supervised
relation extraction. The major challenge comes from the deficiency
of supervision, since we only have a few relation instances as seeds.
Therefore, the performance of existing approaches, including the
pattern-based [1, 16, 44] and the distributional approaches [4, 20,
39], is not satisfactory. Although some studies [25, 30, 34] trying
to reduce the reliance on seeds by integrating both approaches,
they simply employ a joint training framework, which still requires
considerable relation instances to train effective models.

To better overcome the challenge of seed scarcity, in this paper
we propose a framework called REPEL based on the co-training
strategy [3]. Our framework consists of twomodules, a patternmod-
ule and a distributional module (see Fig. 2), which extract relations
from different perspectives. The pattern module aims at finding a
set of reliable textual patterns for relation extraction. Meanwhile,
the distributional module tries to learn entity representations and
train a score function, which measures the quality of a relation
instance. Different from existing studies, both modules are encour-
aged to provide extra supervision to each other, which is expected to
complement the limited supervision from seed instances (see Fig. 3).
Specifically, the pattern module is treated as a generator since it
can extract some candidate relation instances, and meanwhile the
distributional module acts as a discriminator to evaluate each in-
stance. During training, the discriminator evaluates the instances
generated by the generator, and the results serve as extra signals to
adjust the generator. On the other hand, the generator will in turn
generate some highly confident instances, which act as extra seeds
to improve the discriminator. We keep iterating between adjusting
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Figure 4: Illustration of the pattern module. We extract pat-

terns by considering the dependency parsing trees. The pat-

tern reliability is calculated based on the seed entity pairs.

the pattern module and improving the distributional module. Once
the training process converges, both modules can be utilized to
discover more instances.

The overall objective is summarized below:

max
P,D

O = max
P,D
{Op +Od + λOi }. (1)

In the objective, P represents the parameters of the pattern module,
that is, a given number of reliable patterns for each target relation.
D denotes the parameters of the distributional module, that is, en-
tity representations and a score function. The objective function
consists of three terms. Among them, Op is the objective of the
pattern module, in which we leverage the given seed instances
for pattern selection. Od is the objective of the distributional mod-
ule, which learns relevant parameters under the guidance of seed
instances. Finally, Oi models the interactions of both modules.

Next, we introduce the model details. Note that for simplicity,
we only consider one relation when introducing the model. To deal
with multiple relations, we can simply combine their objectives.

3.2 Pattern Module

In the pattern module, our goal is to select a given number of the
most reliable patterns P for the target relation, and further leverage
them to discover more relation instances from corpora.

Following previous studies on pattern based approaches [5, 23,
40], we define a pattern as the tokens in the shortest dependency
path between a pair of entities in a sentence. Fig. 4 presents an
example, in which the pattern of the sentence is [Head] city [Tail].
Given this definition, we can go back to the corpus and extract a
pattern for every pair of entities in a sentence, forming a set of
candidate patterns and many entity pairs linked to each pattern.

Among all the candidate patterns, we hope to extract the most
reliable ones for the target relation. Towards this goal, we leverage
the seed relation instances as guidance, and estimate the reliability
of a pattern π with the following measurement R (π ):

R (π ) =
|G (π ) ∩ Spair |
|G (π ) | , (2)

where G (π ) represents all the entity pairs extracted by the pattern
π , and Spair is the set of seed entity pairs under the target relation.
The numerator of R (π ) is the number of seed entity pairs which
can be discovered by the pattern π , and the denominator counts all
extracted entity pairs. For example in the right part of Fig. 4, we
focus on the relation capital of, and the pattern [Head] city [Tail]

extracts two entity pairs. Among them, the red pair is in the seed
set, and therefore the reliability is 1/2. Such definition of R (π ) is
quite intuitive. Basically, if a pattern can extract many seed entity
pairs under the target relation, then it will be considered reliable.



Based on the measurement, we try to select the top-K most
reliable patterns, in which K is a given number. Such goal can
be achieved by optimizing the following objective function with
respect to P :

Op =
X

� 2P
R (� ), (3)

where P is the pattern set with size K .
Once the most reliable patterns P are learned for the target

relation, we can leverage them to extract new entity pairs under the
target relation. Formally, we denote the set of entity pairs extracted
by the pattern set P as G (P ), which is calculated as follows:

G (P ) = [� 2PG (� ), (4)

where G (� ) is the set of entity pairs extracted by pattern � .

3.3 Distributional Module
The distributional module of our approach focuses on the global
distributional information of entities. Speci�cally, it aims at learning
distributed entity representations from corpora, so that similar
entities are likely to have similar representations. Meanwhile, we
utilize the given relation instances as seeds to train a score function,
which takes entity representations as features to estimate whether
a relation instance is reasonable.

To learn entity representations from text corpora, we follow [32]
and build a bipartite network between all the entities and words.
The weight between an entity and a word is de�ned as the number
of sentences in which they co-occur. Then for an entity e and a
wordw , we infer the conditional probability P (w |e ) as follows:

P (w |e ) = exp(xe · cw )

Z
, (5)

where xe is the vector representation of entity e , cw is the embed-
ding vector of wordw and Z is a normalization term.

Given the estimated conditional probability p (·|e ), we try to
minimize its KL divergence from the empirical distribution p0(·|e )
for every entity e , so that the distributional information can be
preserved into the learned entity representations. Speci�cally, the
empirical distribution is de�ned as p0(w |e ) / nw,e , where nw,e is
the weight of the edge between word w and entity e . After some
simpli�cation, we obtain the following objective function:

Otext =
X

w,e
nw,e log P (w |e ), (6)

The above objective function can be e�ciently optimized with the
negative sampling [20] and edge sampling [33] techniques. In each
epoch, a positive edge and several negative edges are sampled for
optimization. For details, readers may refer to [32, 33].

Meanwhile, we also leverage the given seed instances to learn
a score function, which estimates the quality of a instance, that
is, how likely an entity pair has the target relation. Following the
previous work [4], for an entity pair f = (eh , et ), its score under
the target relation is de�ned as follows:

LD ( f |r ) = �| |xeh + �r � xet | |22 , (7)

where | | · | |2 is the Euclidean norm of a vector, xe is the representa-
tion of entity e , r is the target relation and �r is a parameter vector
for the target relation.

Intuitively, we expect a seed entity pair could have larger scores
than some randomly sampled pairs under the target relation. There-
fore, we adopt the following ranking based objective for training:

Oseed =
X

f 2Spair

X

f 0=(e 0h,e
0
t )

min{1,LD ( f |r ) � LD ( f 0 |r )}. (8)

Spair is all seed pairs, e 0h and e 0t are randomly sampled entities.
Finally, we integrate Eqn. 6 and Eqn. 8 as the objective of the

distributional module, and we try to optimize it with respect to D.

Od = Otext + �Oseed , (9)

where � is used to control the weights of the two parts, D repre-
sents all parameters of the distributional module, including entity
representations {xe } and the parameter vector �r of the relation.

Once the representations are learned, we can use the score func-
tion LD to measure the score of each entity pair under the target
relation, and thus discover some highly con�dent relation instances.

3.4 Modeling the Module Interaction
So far, the supervision of both modules totally comes from the given
relation instances, which is insu�cient in the weakly-supervised
setting. To solve this problem, we follow the co-training strategy [3],
and encourage both modules to provide extra supervision for each
other.

Speci�cally, we introduce the following objective function, and
try to maximize it with respect to both of P and D:

Oi = Ef 2G (P )[LD ( f |r )], (10)

where f 2 G (P ) is an entity pair extracted by the reliable pattern
set P with G (P ) de�ned in Eqn. 4, LD ( f |r ) is the score of pair f
under the target relation. From the objective function, we see that
the selected patterns P acts as a generator, since it generates some
candidate entity pairs under the target relation; whereas the dis-
tributional module serves as a discriminator, trying to score the
generated entity pairs under the target relation. The goal of the
objective function is to encourage the agreement of the patternmod-
ule and the distributional module. More speci�cally, we hope that
the entity pairs generated by the pattern module can be considered
reasonable by the distributional module. The intuition underlying
the objective comes from the co-training algorithms [3], where it
has been proved that the error rate of two predictive models can
be decreased by minimizing their disagreement [6].

To intuitively understand how this objective function will im-
prove both modules, let us consider how to optimize with respect
to both modules. For the pattern module, to maximize the above
objective, the pattern set P should include patterns which are con-
sidered reliable by the distributional module. That is, the entity
pairs generated by those patterns should obtain large scores from
the distributional score function LD . In this way, the distributional
module provides extra supervision to estimate the pattern relia-
bility. Meanwhile, for the distributional module, to maximize the
objective function, it should assign larger scores to the entity pairs
generated by the pattern module. Therefore, the highly con�dent
entity pairs generated by the pattern module serve as extra seeds
to help improve the distributional module.

With the above objective function, both modules can tightly
interact with each other, and provide extra supervision to overcome
the challenge of seed scarcity.



4 THE JOINT OPTIMIZATION PROBLEM
To optimize the overall objective function (Eqn. 1), we leverage the
coordinate gradient descent algorithm [38], by iterating between
two sub-processes. In the �rst sub-process, we �x the pattern mod-
ule, and update the distributional module under the guidance of the
given seeds and the highly con�dent instances generated by the pat-
tern module. In the second sub-process, the distributional module
is �xed, and we update the selected patterns with the given seed in-
stances and the supervision provided by the distributional module.
During training, we keep iterating between the two sub-processes,
so that both modules can be consistently improved.
1. Optimizing the Distributional Module. In this step, we �x
the selected pattern set P to update the parameters D of the distri-
butional module. Formally, maximizing the objective function with
respect to D can be transformed as the following problem:

max
D
{Od + �Oi } = max

D
{Od + �Ef 2G (P )[LD (f |r )]}, (11)

which is a continuous optimization problem. We use the stochastic
gradient descent algorithm for optimization. On the one hand, we
adjust all parametersD to maximize theOd part. On the other hand,
some entity pairs f will be sampled based on the selected patterns
P , which are treated as extra instances to update D.
2. Optimizing the Pa�ernModule. In this this, we �x the param-
eters D of the distributional module and adjust the reliable pattern
set P . Formally, maximizing the objective function with respect to
P is equivalent to the following optimization problem:

max
P
{Op + �Oi } = max

P
{
X

� 2P

⇣
R (� ) + �Ef 2G (� )[LD (f |r )]

⌘
}, (12)

which is a discrete optimization problem, with the goal as select-
ing a given number of patterns P with the largest reliability. The
reliability of a pattern � is calculated from two sources: Op and
Oi . In the Op part, the reliability is measured with R (� ) de�ned in
Eqn. 2, which leverages the given seeds for reliability estimation.
In theOi part, we utilize the score function LD to score each entity
pair f extracted by pattern � , and further average them to obtain
another reliability estimation Ef 2G (� )[LD ( f |r )]. Finally, the two
estimations are weighted as the overall reliability. In practice, we
can �rst calculate the overall reliability of each pattern, and then
select the top-K patterns to form the reliable pattern set P .

Finally, we summarize the optimization algorithm into Alg. 1.
Once the training converges, our approach will return a set of
discovered reliable patterns from the pattern module and a distri-
butional score function from the distributional module. Both the
learned patterns and score function can be leveraged for relation
extraction, which extract new instances from di�erent perspec-
tives. Speci�cally, the learned reliable patterns extract relations
from local contexts by matching the contexts with the patterns,
which usually have high precision but low recall. This is because
for a pair of entities, the local contexts mentioning both entities
are usually more reliable for predicting their relations, leading to
high precision. However, for many pairs of entities, they may never
co-occur in any local contexts, and thus using local contexts can
result in low recall. In practice, the learned reliable patterns can be
applied to applications such as corpus-level relation extraction (see
the details in Sec. 5.1.3 (2)). On the other hand, the learned distri-
butional score function predicts entity relation from corpus-level
statistics, leading to relatively low precision but high recall, and is

more suitable for tasks like knowledge base completion with text
corpora (see the details in Sec. 5.1.3 (1)).

Algorithm 1 Optimization algorithm of REPEL.
Input: A text corpus, a few seed relation instances, the number of reliable

patterns K , the parameter �, the parameter �.
Output: A set of reliable patterns P from pattern module, a score function

LD from distributional module, extracted relation instances.
1: Generate patterns and entity pairs extracted by each pattern.
2: Build the bipartite network between entities and words.
3: while not converge do
4: � Update the distributional module:
5: Extract some instances by using the set of reliable patterns P .
6: Optimize D with both the seeds and extracted instances (Eqn. 11).
7: � Update the pa�ern module:
8: Calculate pattern reliability with the seeds and LD (Eqn. 12).
9: Select the top-K most reliable patterns to form the pattern set P .
10: end while
11: � Extract relation instances:
12: Utilize the reliable patterns P to extract instances from local contexts.
13: Utilize the distributional score function LD to extract instances.

5 EXPERIMENT
In this section, we evaluate our approach on two downstream appli-
cations: knowledge base completion with text corpora (KBC) and
corpus-level relation extraction (RE).

In knowledge base completion with text corpora, the key task is
to predict the missing relationships between each pair of entities in
knowledge bases. Since some pairs of entities may not co-occur in
any sentences in the given corpus, the learned pattern module can
not provide information for predicting their relations. Therefore,
for KBC we only use the entity representations and score function
learned by the distributional module for extraction, and we expect
to show that the pattern module can provide extra seeds during
training, yielding amore e�ective distributional module. For corpus-
level RE, it aims at predicting the relation of a pair of entities from
several sentences mentioning both of them. In this case, the reliable
patterns learned by the patternmodule can capture the local context
information from the sentences. Therefore, we focus on utilizing
the learned pattern module for prediction in RE, and we expect
to show that the distributional module can enhance the pattern
module by providing extra supervision to select reliable patterns.

5.1 Experiment Setup
1. Datasets. In experiment, we leverage existing NER tool [18]
for entity detection. Since the NER tool can only detect entities
of several major types such as location, person and organization,
we thus sample 10 common relations 1 related to person, location
and organization from Freebase 2 as our target relations. Then two
datasets are constructed based on the selected relations.

(1)Wiki: The �rst 150K articles in Wikipedia 3 are used as the
corpus. For each target relation, we randomly sample 50 relation
1location.country.capital, people.person.parents, people.person.children, lo-
cation.administrative division.country, people.person.place of birth, loca-
tion.neighborhood.neighborhood of, people.person.nationality, people.deceased
person.place of death, location.location.contains, organization.organization.founders.
2 https://developers.google.com/freebase/
3 https://www.wikipedia.org/

https://developers.google.com/freebase/
https://www.wikipedia.org/


Table 1: Statistics of the Datasets.
Dataset Wiki + Freebase NYT + Freebase

# Documents 150,000 118,664
# Entities 92,443 23,120

# Candidate Patterns 621,782 232,892
# Seed Instances per Relation 50 50

# Relations in KBC 10 10
# Test Instances in KBC 10,734 6,094

# Relations in RE 5 6
# Test Entity Pairs in RE 131 222

instances from Freebase as seeds. In the knowledge base completion
task, we select all the above 10 relations as the target relations, and
we sample 10,734 extra instances from Freebase for prediction. In
the corpus-level relation extraction task, the manually annotated
sentences from [10] are used for evaluation. Among all relations in
the annotated sentences, 5 relations 4 can be mapped to our selected
10 Freebase relations, and thus we only focus on these 5 relations.
There are totally 194 manually annotated sentences and 131 entity
pairs related to the relations.

(2) NYT: The 118,664 documents from 2013 New York Times
news articles. Similar to the Wiki dataset, for each target relation
we randomly sample 50 relation instances from Freebase as seeds.
In the knowledge base completion task, we select all the above 10
relations as the target relations, and totally 6,094 extra instances
are sampled for evaluation. In the corpus-level relation extraction
task, we leverage the manually annotated sentences from [11] for
evaluation. Among all relations in the sentences, 6 relations 5 can be
mapped to the selected 10 Freebase relations, so we focus on these
6 relations. There are totally 322 manually annotated sentences and
222 entity pairs related to the relations.

For each text corpus, we adopt Stanford CoreNLP package [18]6
to do preprocessing. Then we leverage DBpedia Spotlight [9]7 to
link the detected entity names to the Freebase.
2. ComparedAlgorithms. In the knowledge base completion task,
we select the following baseline algorithms to compare:
(1) word2vec [20]: A distributional approach for word embedding
learning, which can learn entity representations from text corpora.
Once the representations are learned, we utilize the seed instances
to train a relation classi�er (Eqn. 7) for extraction. (2)TransE [4]: A
distributional approach for knowledge base completion, which only
uses the given seed instances for training. (3) RK [36]: A distribu-
tional approach for knowledge base completion, which leverages
both the text corpus and the given relation instances to learn en-
tity representations. (4) DPE [25]: An approach that integrates
the distributional and pattern-based methods. It jointly models
the distributional information in text corpora, the given relation
instances and the textual patterns. (5) CONV [34]: A knowledge
base completion approach, which integrates the distributional and
pattern-based methods by jointly optimizing the given seed in-
stances and the instances extracted by textual patterns.

In the corpus-level relation extraction task, the following ap-
proaches are selected to compare:

4people.person.children,people.person.place of birth,people.person.nationality,people.deceased
person.place of death,organization.organization.founders.
5people.person.children,people.person.nationality,location.location.contains,
people.deceased person.place of death,organization.organization.founders,
location.administrative division.country.
6 http://stanfordnlp.github.io/CoreNLP/
7 https://github.com/dbpedia-spotlight/dbpedia-spotlight

(1) SnowBall [1]: A pattern approach for relation extraction, which
discovers reliable patterns with the seed instances in a bootstrap-
ping way. (2) CNN-ATT [16]: A pattern approach for corpus-level
relation extraction. It leverages convolutional neural networks to
encode and classify each sentence, and then consolidates the results
of di�erent sentences using an attention mechanism. (3) PCNN-
ATT [16]: A pattern approach for corpus-level relation extraction.
Compared with CNN-ATT, it also involves the position embedding
for each word and entity. (4) PathCNN [45]: A pattern approach
for corpus-level relation extraction. For each entity pair, besides
sentences mentioning both entities, it also considers some other
sentences mentioning only one of them. (5) LexNET [29, 30]: An
approach combining the distributional and pattern-based methods
for relation extraction. Formally, it uses a recurrent layer to encode
local textual patterns, and then uses the encoding vector together
with entity representations for prediction.

For our proposed approach, we consider the following variants:
(1) REPEL-P: A variant of our approach with only the pattern
module (Op ). (2) REPEL-D: A variant of our approach with only
the distributional module (Od ). (3)REPEL: Our proposed approach,
which encourages the collaboration of bothmodules during training.
Once the training converges, we leverage the entity representations
and score function learned by the distributional module for the KBC
task; whereas the reliable patterns discovered by the patternmodule
are used for the RE task.

3. Evaluation Setup. (1)KnowledgeBaseCompletion: For each
compared algorithm, we �rst learn entity representations and re-
lation classi�ers (or score function for our approach) by using the
given text corpus and relation instances. Then the learned repre-
sentations and classi�ers are leveraged for evaluation. Speci�cally,
for each test instance (eh , et , r ), we remove its head entity or tail
entity, obtaining two incomplete instances, including (eh , ?, r ) and
(?, et , r ), and our goal is to select the correct entity from the entity
set to �ll the incomplete instances. To do that, for each candidate
entity in the entity set, we calculate its score by measuring the
quality of the formed instance using the relation classi�er. Then we
sort di�erent entities in the descending order based on their scores,
and calculate the rank of the correct entity. Finally, we report the
mean value of those ranks (i.e., MR) and also the proportion of the
correct entities ranked within top 10 (i.e., Hits@10).
(2) Corpus-level Relation Extraction: For each compared algo-
rithm,we �rst use it to predict the relation expressed in each test sen-
tence. Speci�cally, for neural network based approaches (PathCNN,
CNN-ATT, PCNN-ATT, LexNET), the test sentences can be directly
classi�ed based on the learned neural classi�ers. For approaches
based on textual patterns (Snowball, REPEL, REPEL-P), we �rst
match the local context of the test sentence to a discovered reliable
pattern �⇤, then we classify the sentence based on the relation
expressed by pattern �⇤. To do such matching, we represent each
learned reliable pattern and the local patterns of the test sentences
with a low-dimensional vector. The pattern vector is calculated by
averaging the embeddings of tokens in each pattern, with the token
embeddings learned by our approach in Eqn. 5. Once the pattern
vectors are obtained, each local pattern in test sentences is matched
to its most similar reliable pattern, in which the similarity is mea-
sured as the cosine similarity between the pattern vectors. After

http://stanfordnlp.github.io/CoreNLP/
https://github.com/dbpedia-spotlight/dbpedia-spotlight


all test sentences are classi�ed, for each test entity pair, we consoli-
date the prediction results from the test sentences mentioning both
entities, and return the predicted relation together with the con�-
dence score. During consolidate, we either average the prediction
results of all test sentences (LexNET, PathCNN, Snowball, REPEL,
REPEL-P), or leverage the learned attention mechanism (CNN-ATT,
PCNN-ATT). Finally, we sort all test entity pairs in the descending
order based on the calculated con�dence scores, and compare the
ranked list with the ground-truth. Based on the results, we report
both the precision at position K (i.e., P@K), recall at position K (i.e.,
R@K) and the precision-recall curve.
4. Parameter Se�ings. For all knowledge base completion meth-
ods and the distributional module of our approach, we set the
dimension of all representations as 100. The number of iterations
for TransE, word2vec, RK, DPE are set as 1000, 20, 20, 3B respec-
tively to ensure the convergence. Other parameters are set as the
default values suggested in the original papers. For the neural based
approaches to corpus-level relation extraction, the dimension of
the embedding layer and the hidden layer is set as 100. Other pa-
rameters are set as the default values suggested in the original
papers. For our proposed approach, the parameter � for controlling
the weight of the interaction term is set as 1 by default. For the
distributional module, the learning rate is set as 0.01, the parameter
� is set as 0.005, the number of training edges in each iteration is
set as 3B. For the pattern module, we set the number of reliable
patterns K for each relation as 100.

5.2 Performance Comparison
1. Knowledge Base Completion with Text Corpora (KBC).
We present the quantitative results in Table 2, and the hits curve in
Fig. 5. For the approach only considering the given seed instances
(TransE), we see the performance is very limited due to the scarcity
of seeds. Along the other line, the approach considering text cor-
pora (word2vec) achieves relatively better results, but are still far
from satisfactory, since it ignores the supervision from the seed
instances. If we consider both the text corpus and seed instances for
entity representation learning (RK), we obtain much better results.
Moreover, by further jointly training a pattern model (DPE, CONV),
the hits ratio can be further signi�cantly improved.

Table 2: Quantitative results on the KBC task.

Algorithm Wiki + Freebase NYT + Freebase
Hits@10 MR Hits@10 MR

TransE [4] 7.13 4328.40 15.94 3833.47
word2vec [20] 32.12 203.53 15.56 913.04

RK [36] 41.49 72.87 29.01 307.89
DPE [25] 45.45 78.87 32.47 279.99
CONV [34] 46.84 139.81 31.51 903.38
REPEL-D 47.49 67.28 35.79 234.23
REPEL 51.18 62.18 38.98 199.44

For our proposed approach, with only the distributional mod-
ule (REPEL-D), it already outperforms all the baseline approaches.
Compared with DPE, the performance gain of REPEL-D mainly
comes from the usage of the score function in Eqn. 7, which can
better model di�erent relations. Compared with CONV, REPEL-D
achieves better results, as the distributional information in text cor-
pora can be better captured with Eqn. 6. Moreover, by encouraging
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Figure 5: Hits curves on the KBC task.

the collaboration of both modules (REPEL), the results are further
signi�cantly improved. This observation demonstrates that the pat-
tern module can indeed help improve the distributional module by
providing some highly con�dent instances.

Overall, our approach achieves quite impressive results on the
knowledge base completion task compared with several strong
baseline approaches. Also, the pattern module can indeed enhance
the distributional module with our co-training framework.
2. Corpus-level Relation Extraction (RE). Next, we show the
results on the corpus-level relation extraction task. We present the
quantitative results in Table 3 and the precision-recall in Fig. 6.
For the approaches using textual patterns (Snowball), we see the
results are quite limited especially on the NYT dataset. This is
because it discovers informative patterns in a bootstrapping way,
which can lead to the semantic drift problem [8] and thus harm the
performance. For other neural network based pattern approaches
(PathCNN, CNN-ATT, PCNN-ATT), although they are proved to
be very e�ective when the given instances are abundant, their
performance in the weakly-supervised setting is not satisfactory.
The reason is that they typically deploy complicated convolutional
layers or recurrent layers in their model, which rely on massive
relation instances to tune. However, in our setting, the instances are
very limited, leading to their poor performance. For the integration
approach (LexNET), although it incorporates the distributional
information, the performance is still quite limited especially on
the NYT dataset. This is because the joint training framework of
LexNET also requires considerable training instances.

Table 3: Quantitative results on the RE task.

Algorithm Wiki + Freebase NYT + Freebase
P@50 R@50 P@100 R@100 P@50 R@50 P@100 R@100

Snowball [1] 58.00 22.14 65.00 49.62 20.00 4.50 21.00 9.46
CNN-ATT [16] 26.00 9.92 22.00 16.79 24.00 5.41 29.00 13.06
PCNN-ATT [16] 58.00 22.14 36.00 27.48 46.00 10.36 26.00 11.71
PathCNN [45] 36.00 13.74 38.00 29.01 42.00 9.46 26.00 11.71
LexNET [29, 30] 74.00 28.24 61.00 46.56 32.00 7.21 26.00 11.71

REPEL-D 14.00 5.34 17.00 12.98 6.00 1.35 7.00 3.15
REPEL-P 64.00 24.43 70.00 53.44 32.00 7.21 33.00 14.86
REPEL 78.00 29.77 76.00 58.02 48.00 10.81 43.00 19.37

For our proposed approach, the performance of the distribu-
tional module (REPEL-D) is very bad. This is because each test
entity is mentioned in only few test sentences, and thus the learned
entity representations are not so e�ective due to the sparsity of
the distributional information. On the other hand, the pattern mod-
ule (REPEL-P) of our approach achieves surprisingly good results,
which are comparable to the neural models. This is because we
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Figure 6: Precision-Recall curves on the RE task.
represent each pattern using the average embedding of tokens in
the pattern for pattern matching, where the token embedding is
learned from the given text corpus. Although such strategy is very
naive compared with the neural encoding methods, it does not
involve any extra parameters to learn. In the weakly-supervised
setting, the neural methods are usually hard to train due to the
large number of parameters, leading to inferior results. Whereas
our approach achieves impressive results because of its simplicity.
Furthermore, comparing the pattern module (REPEL-P) with the
complete framework (REPEL), we see that the complete framework
further outperforms the pattern module, which demonstrates that
the distributional module can also enhance the pattern module by
helping estimate pattern reliability.

Overall, in the weakly-supervised setting, our approach is able
to achieve comparable results compared with the neural methods.
Besides, the distributional module can indeed improve the pattern
module with our co-training framework.

5.3 Performance Analysis
1. Performance w.r.t. the Number of Seed Instances. To over-
come the challenge of seed scarcity, our approach encourages both
modules to provide extra supervision for each other. In this section,
we thoroughly study whether our framework is indeed robust to
the scarcity of seed instances. We take the Wiki dataset as an exam-
ple, and report the performance of di�erent methods under di�er
number of seed instances.
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Figure 7: Performance w.r.t. # relation instances. Our ap-
proach consistently outperforms the compared algorithms
especially when the given seeds are very limited.

Fig. 7 presents the results on the KBC and RE tasks. We see that
our approach (REPEL) consistently outperforms other approaches
(CONV, LexNET) integrating both the distributional and pattern-
based methods. Besides, our approach (REPEL) also achieves better

results than its variants (REPEL-P, REPEL-D), which deploy only
one module. Moreover, we observe that when the given seed in-
stances are quite su�cient, the results of di�erent approaches are
pretty close. Whereas under very limited seed instances, our ap-
proach (REPEL) signi�cantly outperforms its variants (REPEL-P,
REPEL-D) and the baseline approaches (CONV, LexNET). Based on
the observation, we see that with the co-training framework, our
approach is more robust to seed scarcity compared with existing
integration approaches (CONV, LexNET).
2. Convergences Analysis. In our approach, we leverage the co-
ordinate gradient descent algorithm for optimization, alternating
between updating the distributional module and improving the pat-
tern module. Next, we examine the optimization algorithm and
study whether it converges during training. We take the Wiki
dataset as an example, and present the performance of our approach
at each iteration.
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Figure 8: Convergence curves of our approach. Our approach
quickly converges after several iterations.

Fig. 8 presents the results. In both tasks, the performance of
our approach is consistently improved at the �rst several itera-
tions, which shows that both modules can keep improving each
other in our framework. Besides, we see that our approach quickly
converges after several (3⇠4) iterations, which demonstrates the
e�ciency of the optimization algorithm.
3. Performance w.r.t. �. In our framework, the parameter � con-
trols the weight of the interaction term Oi (Eqn. 10). A large �
encourages strong interactions of both modules, whereas a small �
corresponds to weak interactions. In this part, we study the perfor-
mance of our approach under di�erent �. We take the Wiki dataset
as an example, and report the results on both tasks.
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Figure 9: Performance w.r.t. �. Encouraging the interaction
of the both modules (� > 0) improves the performance.



Fig. 9 presents the results. When � is set as 0, meaning that
there is no interaction between the modules, we see that the results
are quite limited. Then the results are quickly improved as we
gradually increase �, which further remain stable in the range
(0.5, 1). If we further increase �, the results begin to drop in the
knowledge base completion task, as a large � emphasizes too much
on the supervision provided by the modules, and thus ignores the
supervision from the given seed instances.
4. Case Study. In our co-training framework, both modules will
collaborate with each other to overcome the seed scarcity problem.
Speci�cally, the distributional module provides extra signals to
select reliable patterns, whereas the pattern module discovers some
highly con�dent instances to improve the distributional module.
Next, we show some case study results to intuitively illustrate that
both modules can indeed mutually enhance each other.

Table 4: The most reliable patterns discovered by our ap-
proach. Blue patterns are incorrect ones by human.

Relation: people.person.place-of-birth
REPEL-P REPEL

[Tail] [Head] birthplace [Head] born place [Tail]
[Head] born place [Tail] [Head] born city [Tail]
[Head] father move [Tail] [Tail] [Head] birthplace
[Head] born city [Tail] [Head] born June [Tail]

[Head] born January [Tail] [Head] live return [Tail]
Relation: people.person.parents

REPEL-P REPEL
[Tail] die succeed son [Head] [Tail] die succeed son [Head]

Babur [Tail] [Head] [Head] daughter [Tail]
[Tail] give boy [Head] [Head] son [Tail]

[Head] son [Tail] descendant [Tail] [Head]
have relationship [Head] [Tail] [Tail] marry have son [Head]

We �rst present the most reliable path-based patterns (i.e., to-
kens along the shortest dependency path between two entities)
discovered by our approach and its variant on the Wiki dataset
in Table 4. Blue patterns are unreliable ones based on the human.
Comparing our approach with its variant (REPEL-P), we see that
by considering the supervision signals from the distributional mod-
ule (REPEL), some unreliable patterns can be �ltered out from the
pattern list, and the patterns discovered by our approach (REPEL)
are more reliable. Therefore, the distributional module can indeed
help the pattern module for reliable pattern selection.

Table 5: Top ranked instances extracted by the reliable pat-
terns. Blue instances are incorrect ones by human.

Relation: people.person.nationality
(Charles IV of France, France) (Benjamin Franklin, USA)

(Adolf Hitler, German) (Thomas Je�erson, USA) (Pol Pot, Thailand)
Relation: location.country.capital

(Denmark, Copenhagen) (Vietnam, Ho Chi Minh City)
(Norway, Oslo) (Yugoslavia, Belgrade) (Guinea, Conakry)

Meanwhile, we also randomly sample some instances extracted
by the discovered reliable patterns, and we show them in Table 5,
where the blue instances are the incorrect ones by human. From
the results, we see that most instances extracted by the reliable
patterns are correct and reasonable. Therefore, the pattern module

can in turn bene�t the distributional module by providing some
reasonable relation instances.

6 RELATEDWORK
Our work is related to pattern-based approaches for relation ex-
traction. Given two entities, the pattern-based approaches predict
their relation from sentences mentioning both entities. Traditional
approaches [1, 14, 23, 28, 41] try to �nd some informative textual
patterns using the given instances, and utilize the patterns for
extraction. However, these approaches ignore the semantic corre-
lations of patterns, and thus su�er from semantic drift [8]. Recent
approaches [16, 17, 30, 34, 40, 45] address the problem by encoding
textual patterns with neural networks. Despite their success, these
approaches rely on considerable labeled instances to train e�ective
models, which su�er from the seed scarcity problem in the weakly-
supervised setting. Our approach solves the problem by letting the
distributional module provide extra supervision.

Our work is also related to the distributional approaches. Typi-
cally, these approaches learn entity representations from corpus-
level statistics, and meanwhile a relation classi�er is trained with
the relation instances, which takes entity representations as features
for relation prediction. Some approaches learn entity representa-
tions from only text corpora [20, 24, 33]. However, their perfor-
mance is usually limited due to the lack of supervision. Some other
approaches [4, 13, 15, 36, 37, 39, 42] learn more predictive entity
representations by using the given relation instances as supervision,
achieving superior results. However, they also require abundant
relation instances to learn e�ective relation classi�ers, which are
hard to obtain in the weakly-supervised setting. Our approach al-
leviates the problem by letting the pattern module generate some
highly con�dent instances as extra seeds.

There are also handful studies [25, 27, 30, 34, 35] trying to inte-
grate the distributional and pattern-based approaches. Typically,
they jointly train a distributional model and a pattern model. How-
ever, the supervision of each model totally comes from the given
relation instances, which is insu�cient in the weakly-supervised
setting. Our approach solves the seed scarcity problem with a co-
training framework, which encourages both models to provide
extra supervision for each other.

7 CONCLUSIONS
In this paper, we studied corpus-level relation extraction in the
weakly-supervised setting. We proposed a novel co-training frame-
work called REPEL to integrate a pattern module and a distribu-
tional module. Our framework encouraged both modules to provide
extra supervision for each other, so that they can collaborate to
overcome the scarcity of seeds. Experimental results proved the
e�ectiveness of our framework. In the future, we plan to enhance
the pattern module by using neural models for pattern encoding.
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