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ABSTRACT
Multi-label text classification refers to the problem of assigning each

given document its most relevant labels from a label set. Commonly,

the metadata of the given documents and the hierarchy of the labels

are available in real-world applications. However, most existing

studies focus on only modeling the text information, with a few

attempts to utilize either metadata or hierarchy signals, but not both

of them. In this paper, we bridge the gap by formalizing the problem

of metadata-aware text classification in a large label hierarchy

(e.g., with tens of thousands of labels). To address this problem,

we present theMATCH1
solution—an end-to-end framework that

leverages both metadata and hierarchy information. To incorporate

metadata, we pre-train the embeddings of text and metadata in

the same space and also leverage the fully-connected attentions

to capture the interrelations between them. To leverage the label

hierarchy, we propose different ways to regularize the parameters

and output probability of each child label by its parents. Extensive

experiments on two massive text datasets with large-scale label

hierarchies demonstrate the effectiveness of MATCH over the state-

of-the-art deep learning baselines.
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(a) Input: a PubMed paper with metadata
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(b) Input: MeSH hierarchy

(c) Relevant labels (MeSH terms) of the document

Figure 1: An example of metadata-aware hierarchical text
classification on PubMed. We utilize both (a) the metadata
of documents and (b) a large-scale label hierarchy to predict
(c) relevant labels of each document.

1 INTRODUCTION
Text classification is a fundamental text mining task [1]. In the

age of information overload, it becomes particularly important as

the exponential growth of accessible documents. Take the science

enterprise as an example, the volume of publications has doubled

every 12 years [14], reaching in total 240,000,000 by 2019 [54],

and by February 2021, 213,236 papers on COVID-19
2
had already

been generated. This explosion in publications makes the mission

of tracking the related literature impossible, requiring accurate

classification of them into different levels of topics more than ever.

The current attempt to address this problem is mainly focused

on leveraging the power of deep neural networks, such as the CNN

based XML-CNN model [27] and the RNN based AttentionXML

model [63]. More recently, X-Transformer [8]—a pre-trained lan-

guage model based technique—is presented to perform large-scale

text classification. However, the majority of these studies only

2
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model the text information of documents and are less concerned

with two widely-available signals in real-world applications: docu-
ment metadata and a large-scale label hierarchy.

To illustrate the scenario, Figure 1 takes a scientific paper on

PubMed as an example. We can see that, in addition to its text

information (title and abstract), the paper is also associated with

various types of metadata, such as its publication venue, authors,

and references, which could be strong indicators of its research

topics. For instance, its venue “Lancet” would strongly suggest the

paper is most likely related to medicine; the first three publications

it cites would further indicate the paper’s relevance to epidemiology.

Broadly, metadata is also commonly available for other digitized

documents, such as online posts, product reviews, and code reposi-

tories. However, this common information is largely unexplored in

existing studies [8, 27, 63].

Furthermore, research topics on PubMed are organized in a hier-

archical way, such as the parent topic of “Infections” is “Diseases”
and one of its child topics is “Eye Infections”, providing sig-

nals that are not offered in text alone. For example, the hierarchy

suggests the high prediction confidence in “Eye Infections” for
one paper is also a strong indicator of being “Infections” related.
Consequently, it can also benefit topics with sparse training data.

Though most label systems for text data are naturally organized

into hierarchies, such as web directories [37] and product catalogs

[32], this signal has often been left out [8, 27, 63] or used in a small

label space [38, 64, 68].

Contributions. To bridge the gap, we formalize the problem of

metadata-aware text classification in a large-scale label hierarchy.

Specifically, given a collection of documents, the task is to train a

multi-label classifier that incorporates not only their text informa-

tion but also both the metadata and taxonomy signals for inferring

their labels. To address this problem, we present theMATCH frame-

work that fully utilizes both signals. To exploit the metadata of input

documents, we propose to generate the pre-trained embeddings of

text (i.e., words) and metadata in the same latent space. We further

leverage the fully connected attention mechanism in Transformer

to capture all pairwise relationships between words and different

types of metadata, which produces an expressive representation

for each document with its metadata encoded. Empirical evidence

suggests that the modeling of metadata not only helps improve

the classification results but also accelerates the convergence of

classifier training.

To incorporate the label hierarchy, we design strategies to regu-

larize the parameters and output probability of each child label by

its parents. In the parameter space, we encourage the child and par-

ent labels to have similar parameters in the prediction layer, that is,

determining whether a document would be tagged with a child label

(e.g., “Eye Infections”) should share similarities with whether to

assign it with its parent (e.g., “Infections”). In the output space,

we introduce a regularization inspired by the distributional inclu-

sion hypothesis [16]. Intuitively, it requires the probability that a

document belongs to a parent label to be no less than the ones that

it is associated with its children. Such a regularization strategy char-

acterizes the asymmetric hypernym-hyponym relationship, which

is beyond the symmetric similarity in the parameter space.

Empirically, we demonstrate the effectiveness of MATCH on

two massive text datasets extracted from the Microsoft Academic

Graph [48, 55] and PubMed [30]. Both datasets contain large-scale

topic hierarchies with more than 15K labels. The results suggest

thatMATCH can consistently outperform the state-of-the-art multi-

label text classification approaches as well as Transformer-based

models. Moreover, we validate the design choices of incorporating

metadata and the label hierarchy for text classification. Finally, we

present several case studies to illustrate howMATCH specifically

benefits from these two sets of signals.

To summarize, this work makes the following contributions:

• We formalize the problem of text classification with the metadata

of documents and a large-scale hierarchy of labels, which are

usually not simultaneously modeled in existing studies.

• We design an end-to-endMATCH framework that incorporates

both document metadata and a large label hierarchy for the text

classification task.

• We conduct extensive experiments onmassive online text datasets

to demonstrate the effectiveness of the proposed MATCH frame-

work and its design choices.

The rest of the paper is organized as follows. We define several

concepts and formulate the problem in Section 2. Then, we present

theMATCH framework in Section 3. We conduct experiments in

Section 4 and review related work in Section 5. Finally, Section 6

concludes this study.

2 PROBLEM DEFINITION
We study the problem ofmulti-label text classification. Traditionally,

this problem is formalized as using only the text information of

documents as the input for inferring their labels [8, 27, 63]. Here

text refers to all free-text fields of a document (e.g., the title and

abstract of a scientific publication).

However, the metadata of documents and the hierarchy of la-

bels are usually also available in real-world applications. Take the

academic publication in Figure 1 as an example, the metadata of

one document includes its authors (e.g., “Samantha K Brooks”),
published venue (e.g., “Lancet”), and referenced papers. The label

hierarchy is organized based on the fine-grained levels of research

topics, such as “Diseases”, “Infections”, and “Eye Infections”.
Formally, we can represent the text information of a document 𝑑

as a single word sequenceW𝑑 = 𝑤1𝑤2 · · ·𝑤𝑁 concatenated from

all its text fields, and all itsmetadata as a setM𝑑 = {𝑚1,𝑚2, · · · ,𝑚𝑀 }.
The label hierarchy can be represented as a tree or a directed acyclic

graph (DAG) that specifies the hypernym-hyponym relationships

between labels. In both cases, the label hierarchy can be charac-

terized by a mapping Φ : L → 2
L
, where Φ(𝑙) is the set of parent

labels of 𝑙 ∈ L. If 𝑙 does not have any parent in L, i.e., 𝑙 is the
root of a tree, we set Φ(𝑙) = ∅. We formalize the problem of the

metadata-aware text classification with a label hierarchy as follows:

Problem 1. Given a training corpusD = {𝑑1, ..., 𝑑 |D |}, the label
space L and its hierarchy Φ, where each document 𝑑 is associated
with its text informationW𝑑 , metadataM𝑑 , and labels L𝑑 ⊆ L,
the objective is to learn a multi-label classifier 𝑓

class
that maps a

document to a subset of L.
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Figure 2: Overview of theMATCH framework.

Different from the conventional multi-label text classification

setting [23, 27, 63], the task here is both hierarchy- and metadata-

aware. There are some previous approaches which have leveraged

metadata into text classification problems, ranging from review

sentiment analysis [50] and tweet localization [66] to generic clas-

sification tasks [24, 65]. However, these studies are all designed for

flat text classification.

Along another line of work, some studies try to utilize the label

hierarchy via recursive regularization [17, 18, 38] or hierarchy-

aware deep neural models [31, 56, 68]. However, these approaches

are unaware of the metadata signals accompanying each document.

The main challenge of our task is then how to simultaneously

incorporate the metadata of documents and a hierarchy of labels

into a unified learning framework.

3 THE MATCH FRAMEWORK
In this section, we present theMATCH framework for the metadata-

and hierarchy-aware multi-label text classification problem. The

overall MATCH framework is illustrated in Figure 2, where we use

the paper “Graph structure in the Web”
3
as a running example.

To incorporate the metadata of documents, MATCH jointly pre-

trains the embeddings of metadata, text, and labels into the same

latent space, which are further fed into a Transformer model for

generating the document representation for prediction. To leverage

the hierarchy of labels, MATCH regularizes the parameters and

output probabilities of each child label by its parents.

MATCH can be decomposed into four modules: (1) metadata-

aware embedding pre-training, (2) Transformer encoding, (3) pre-

diction, and (4) hypernymy regularization.

3.1 Metadata-Aware Embedding Pre-Training
Recently, using pre-trained word embeddings [35] as the initial

input has become a de facto standard for training a neural text clas-

sifier [20, 25, 60]. However, in our task, it is also required to capture

the relationships between text and its metadata, and preferably

to have them embedded in the same latent space. To achieve this,

we propose a metadata-aware embedding pre-training module to

jointly learn their representations by considering several types of

proximities between them.

3
https://academic.microsoft.com/paper/2175110005/

Document & Metadata. To preserve the proximity between a

document 𝑑 and its metadata instances𝑚 ∈ M𝑑 in the joint em-

bedding space, following previous studies on word embedding [35]

and network embedding [52], we define the following conditional

probability:

𝑝 (𝑚 |𝑑) = exp(𝒆𝑇𝑚𝒆𝑑 )∑
𝑚′∈V𝑚

exp(𝒆𝑇
𝑚′𝒆𝑑 )

, (1)

whereV𝑚 is the set of metadata instances sharing the same type

with𝑚 (e.g., if𝑚 denotes a venue, thenV𝑚 is the set of all venues

appearing in the training set); 𝒆𝑚 and 𝒆𝑑 aremetadata and document

embedding vectors, respectively.

Given a positive document-metadata pair (𝑑,𝑚+), our goal is
to maximize the log-likelihood log𝑝 (𝑚+ |𝑑) during the embedding

learning. To achieve this, we adopt the following margin-based

ranking loss:

max

(
0, 𝛾 + log𝑝 (𝑚− |𝑑) − log 𝑝 (𝑚+ |𝑑)

)
≜
[
𝛾 + log𝑝 (𝑚− |𝑑) − log 𝑝 (𝑚+ |𝑑)

]
+
.

(2)

Here,𝑚− is a negative metadata context of document 𝑑 ; 𝛾 > 0 is a

hyperparameter indicating the expected margin between a positive

pair (𝑑,𝑚+) and a negative pair (𝑑,𝑚−). Based on the definition of

𝑝 (𝑚 |𝑑) in Eq. (1), we have

𝛾 + log 𝑝 (𝑚− |𝑑) − log𝑝 (𝑚+ |𝑑)

= 𝛾 + log 𝑝 (𝑚− |𝑑)
𝑝 (𝑚+ |𝑑)

= 𝛾 + log
exp(𝒆𝑇𝑚−𝒆𝑑 )/

( ∑
𝑚′∈V𝑚

exp(𝒆𝑇
𝑚′𝒆𝑑 )

)
exp(𝒆𝑇𝑚+𝒆𝑑 )/

( ∑
𝑚′∈V𝑚

exp(𝒆𝑇
𝑚′𝒆𝑑 )

)
= 𝛾 + log

exp(𝒆𝑇𝑚−𝒆𝑑 )
exp(𝒆𝑇𝑚+𝒆𝑑 )

= 𝛾 + 𝒆𝑇𝑚−𝒆𝑑 − 𝒆
𝑇
𝑚+𝒆𝑑 .

(3)

Therefore, the objective function of document-metadata proximity

can be defined as follows.

JDM =
∑
𝑑∈D

∑
𝑚+∈M𝑑

∑
𝑚−∈V𝑚\{𝑚+ }

[
𝛾 + 𝒆𝑇𝑚−𝒆𝑑 − 𝒆

𝑇
𝑚+𝒆𝑑

]
+
. (4)

Document & Label.We have label information of each document

in the training set. Therefore, the embedding pre-training step



can be designed as a supervised process by incorporating those

document-label relationships. Specifically, a document 𝑑 should be

closer to its relevant labels 𝑙+ than to its irrelevant labels 𝑙−. To
encourage this, we can define the conditional probability 𝑝 (𝑙 |𝑑) in
a form similar to Eq. (1). Then, following the derivation above, the

objective of document-label proximity is

JDL =
∑
𝑑∈D

∑
𝑙+∈L𝑑

∑
𝑙−∈L\{𝑙+ }

[
𝛾 + 𝒆𝑇

𝑙−
𝒆𝑑 − 𝒆𝑇𝑙+𝒆𝑑

]
+
. (5)

Document & Word. The document embedding 𝒆𝑑 can be consid-

ered as the representation of the theme of 𝑑 . Given a theme, authors

write down words that are coherent with the meaning of the en-

tire text. To encourage such coherence, we employ the following

objective:

JDW =
∑
𝑑∈D

∑
𝑤+∈W𝑑

∑
𝑤−∈W\{𝑤+ }

[
𝛾 + 𝒆𝑇𝑤−𝒆𝑑 − 𝒆

𝑇
𝑤+𝒆𝑑

]
+
, (6)

whereW𝑑 is the text sequence of document 𝑑 andW is the whole

word vocabulary.

Word & Context. Given a text sequenceW𝑑 = 𝑤1𝑤2 · · ·𝑤𝑁 , the
semantic of a word𝑤𝑖 depends on not only the document theme but

also its surrounding words in the local context window C(𝑤𝑖 ) =
{𝑤𝑖+𝑗 | − 𝑥 ≤ 𝑗 ≤ 𝑥, 𝑗 ≠ 0}, where 𝑥 is the window size. Following

[35], we assume each word has a center word embedding 𝒆𝑤 and a

context word embedding 𝒄𝑤 . To encourage the closeness between a

word and its local context, the following objective can be proposed.

JWW =
∑
𝑑∈D

∑
𝑤+∈W𝑑

∑
𝑤−∈W\{𝑤+ }

∑
𝑤∈C(𝑤+)

[
𝛾 + 𝒆𝑇𝑤−𝒄𝑤 − 𝒆

𝑇
𝑤+𝒄𝑤

]
+
.

(7)

Given the objective of each type of relationship, our embed-

ding pre-training module can be formulated as a joint optimization

problem as follows.

min

{𝒆𝑑 },{𝒆𝑚 },{𝒆𝑙 },{𝒆𝑤 },{𝒄𝑤 }
J
embedding

= JDM + JDL + JDW + JWW,

s.t. | |𝒆𝑑 | |2 = | |𝒆𝑚 | |2 = | |𝒆𝑙 | |2 = | |𝒆𝑤 | |2 = | |𝒄𝑤 | |2 = 1.

(8)

We use the L2-norm constraints to control the scale of embedding

vectors. These constraints are common when the margin-based

ranking loss is used [7, 43]. Without these constraints, the gap

between positive and negative pairs (e.g., 𝒆𝑇𝑚−𝒆𝑑 − 𝒆
𝑇
𝑚+𝒆𝑑 ) can ap-

proach −∞ when | |𝒆𝑑 | |2 becomes arbitrarily large, which makes

the optimization problem trivial.

Optimization. The overall objective consists of four parts (i.e.,

JDM, JDL, JDW and JWW). To optimize this objective, we adopt

the sampling technique introduced in [51] for efficient updating.

In each iteration, we alternatively optimize one part (e.g., JDM)
by randomly sampling a positive pair (e.g., (𝑑,𝑚+)) and a corre-

sponding negative pair (e.g., (𝑑,𝑚−)). Given the two pairs, we can

calculate the Euclidean gradient ∇𝐸 of embeddings. Taking JDM
as an example, the gradient vectors are as follows.

∇𝐸JDM (𝒆𝑑 ) = 1(𝛾 + 𝒆𝑇𝑚−𝒆𝑑 − 𝒆
𝑇
𝑚+𝒆𝑑 > 0) · (𝒆𝑚− − 𝒆𝑚+ ),

∇𝐸JDM (𝒆𝑚+ ) = 1(𝛾 + 𝒆𝑇𝑚−𝒆𝑑 − 𝒆
𝑇
𝑚+𝒆𝑑 > 0) · (−𝒆𝑑 ),

∇𝐸JDM (𝒆𝑚− ) = 1(𝛾 + 𝒆𝑇𝑚−𝒆𝑑 − 𝒆
𝑇
𝑚+𝒆𝑑 > 0) · 𝒆𝑑 ,

(9)

where 1(·) is the indicator function. When optimizing other parts,

the Euclidean gradient can be calculated in a similar way.

Recall the constraints of our optimization problem that all embed-

ding vectors need to reside on a sphere. Thus, Euclidean gradient

approaches like SGD cannot be directly applied here. Instead, we

adopt the Riemannian gradient method [6]. Specifically, we calcu-

late the Riemannian gradient∇𝑅 on a sphere based on the Euclidean

gradient ∇𝐸 according to the following equation [34]:

∇𝑅J (𝒆) = (𝑰 − 𝒆𝒆𝑇 )∇𝐸J (𝒆) . (10)

Then we update the embedding vectors in the following form [6]:

𝒆 (𝑡+1) ← 𝒆 (𝑡 ) + 𝛼𝑡∇𝑅J (𝒆 (𝑡 ) )
| |𝒆 (𝑡 ) + 𝛼𝑡∇𝑅J (𝒆 (𝑡 ) ) | |2

, (11)

where 𝛼𝑡 is the learning rate at step 𝑡 .

There are several other ways to jointly embed heterogeneous

signals [13, 51]. For example, PTE [51] constructs three bipartite

graphs describing the relationships between labels, words and doc-

uments and then embeds these elements into the same latent space.

We would like to mention two key differences between our pre-

training step and PTE: First, we propose to use a margin-based

ranking loss with metadata instances included as well. Second, we

formulate the optimization problem in a spherical space and solve

it by using the Riemannian gradient method.

3.2 Transformer Layers
Given a document, to facilitate extensive information exchange

between text and metadata during document encoding, we adopt

the Transformer architecture [53] as our encoder. Transformer

proposes a fully connected attention mechanism to support such

exchange between any two tokens in a sequence. Therefore, we

concatenate all metadata instances of a document with its word

sequence to form the layer input. Moreover, we add [CLS] tokens at

the beginning of each input sequence. First proposed in BERT [12],

the final state of such special tokens are used as aggregate sequence

representation for classification tasks. When the label space is large

(e.g., 10K), one [CLS] token (e.g., a 100-dimensional vector) may

not be informative enough to predict the relevant labels. Therefore,

following [58], we put multiple [CLS] tokens [CLS1], ..., [CLS𝐶 ] in

the input. To summarize, given a document 𝑑 , the layer input 𝑯 is

𝑯 =
[
𝒆 [CLS1 ] ; ...; 𝒆 [CLS𝐶 ]︸                  ︷︷                  ︸
[CLS] tokens

; 𝒆𝑚1
; ...; 𝒆𝑚𝑀︸         ︷︷         ︸

metadata M𝑑

; 𝒆𝑤1
; ...; 𝒆𝑤𝑁︸        ︷︷        ︸

words W𝑑

]
.

Here, 𝑯 ∈ R𝛿×(𝐶+|M𝑑 |+ |W𝑑 |)
, where 𝛿 is the dimension of the

embedding space.

Example 3.1. (Input Seqence) Suppose we are given the docu-
ment “Graph structure in the Web” in Figure 2. The input sequence of
the Transformer layer will be

“ [CLS1] ... [CLS𝐶 ] [Venue_WWW] [Author_Andrei Broder]

[Author_Ravi Kumar] ... [Reference_2066636486] [Reference

_1976969221] ... [Word_graph] [Word_structure] [Word_in]

[Word_the] [Word_web] ... ”

Here, the green tokens represent [CLS] symbols; the blue tokens denote
metadata instances (i.e., venue, authors and references in this specific
example); the orange tokens represent words in the document.



Intuition behind the Metadata-aware Input Sequence. Previ-
ous studies (e.g., [20]) have pointed out that, given an input se-

quence S, Transformer treats S as a fully connected token graph.

For each token 𝑖 ∈ S, its context is the entire sequence, and its

representation will be updated by aggregating the information from

all tokens 𝑗 ∈ S. In our case, S is the union ofM𝑑 ,W𝑑 and [CLS]

tokens. Hence, the attention mechanism allows each [CLS] token

to aggregate information from all metadata instances and words.

Moreover, if we treat each input document as an ego network of

the document node 𝑑 (as shown in Figure 2), our embedding pre-

training step essentially captures first-order proximity between 𝑑

and its neighbors, while the fully connected attention mechanism

here describes second-order proximity in𝑑’s neighborhood. In other

words, our Transformer layer facilitates higher-order interactions

among metadata instances and words.

Multi-head Attention. Now we formally introduce the attention

mechanism in the Transformer layer. As in [53], given 𝑯 , one can

use a query vector 𝒒 ∈ R1×𝛿 to select relevant information with

attention.

Attention(𝒒,𝑲 , 𝑽 ) = Softmax

( 𝒒𝑲𝑇
√
𝛿

)
𝑽 , (12)

where 𝑲 = 𝑯𝑾𝐾
and 𝑽 = 𝑯𝑾𝑉

. Matrices 𝑾𝐾
and 𝑾𝑉

are pa-

rameters to be learned.

Similar to the idea of multiple channels in CNN, Transformer

uses multi-head attention to extract more signals from 𝑯 . Formally,

𝒂𝑖 = Attention(𝒒𝑾𝑄

𝑖
,𝑯𝑾𝐾

𝑖 ,𝑯𝑾𝑉
𝑖 ),

MultiHeadAtt(𝒒,𝑯 ) =
[
𝒂1 | | 𝒂2 | | ... | | 𝒂𝑘

]
𝑾𝑂 ,

(13)

where | | denotes the concatenation operation. Matrices𝑾𝑄

𝑖
,𝑾𝐾

𝑖
,

𝑾𝑉
𝑖

and𝑾𝑂
are learnable parameters.

Document Encoding. Using multi-head attention, for each input

token 𝑖 ∈ 𝑯 , we update its representation based on its pre-trained

embedding 𝒆𝑖 .

𝒛𝑖 = LayerNorm

(
𝒆𝑖 +MultiHeadAtt(𝒆𝑖 ,𝑯 )

)
,

𝒉𝑖 = LayerNorm

(
𝒛𝑖 + FFN(𝒛𝑖 )

)
.

(14)

Here, LayerNorm(·) is the layer normalization operator [2] and

FFN(·) is the position-wise feed-forward network [53]. To incorpo-

rate position information of the token, we further concatenate its

sinusoidal position embedding [53] with its input embedding 𝒆𝑖 .
Eq. (14) describes one Transformer layer. As shown in Figure 2,

we can stack 𝐿 Transformer layers, where the output of the 𝑙-th

layer 𝑯 (𝑙) is also the input of the (𝑙 + 1)-th layer. 𝑯 (0) consists of
the pre-trained embeddings, and 𝑯 (𝐿) is used for prediction.

3.3 Prediction Layer
After 𝐿 Transformer layers, we concatenate the final state of all

[CLS] tokens to get the final document representation �̂�𝑑 .

�̂�𝑑 = 𝒉(𝐿)[CLS1 ] | | 𝒉
(𝐿)
[CLS2 ] | | ... | | 𝒉

(𝐿)
[CLS𝐶 ] . (15)

To perform classification, we add a fully connected layer upon

the output of Transformer. The final layer is then connected to

|L| sigmoid functions, which correspond to all labels in L. The

output of the 𝑙-th sigmoid function (π𝑑𝑙 ) denotes the probability
that document 𝑑 should be tagged with label 𝑙 . Formally,

𝛑𝑑 = Sigmoid

(
�̂�𝑑𝑾

Π + 𝒃
)
, (16)

where𝑾Π = [𝒘1, ...,𝒘 |L |] and𝒘𝑙 can be viewed as the parameters

specific to the 𝑙-th label.

Given the output probabilities, our model minimizes the binary

cross-entropy (BCE) loss by treating the multi-label classification

task as |L| binary classification subtasks.

JBCE = −
∑
𝑑∈D

∑
𝑙 ∈L

(
𝑦𝑑𝑙 log π𝑑𝑙 + (1 − 𝑦𝑑𝑙 ) log(1 − π𝑑𝑙 )

)
, (17)

where 𝑦𝑑𝑙 = 1means document 𝑑 has label 𝑙 , and 𝑦𝑑𝑙 = 0 otherwise.

3.4 Hypernymy Regularization
In hierarchical text classification, a given label taxonomy contains

valuable signals of label intercorrelation, which should be leveraged

in the classification process. However, most existing studies ignore

the label dependencies in the input taxonomy [27, 59, 63].

To incorporate the label hierarchy into MATCH, we propose

to regularize each non-root label by its parents. Specifically, the

regularization is applied in both the parameter space and the output

space. In the parameter space, instead of treating the class-specific

parameters𝒘1, ...,𝒘 |L | as independent, we design a regularization

mechanism for modeling the dependencies in the prediction layer;

In the output space, we enable the interactions between the output

probabilities π𝑑1, ..., π𝑑 |L | in the loss function.

Regularization in the Parameter Space. Similar to [17, 38], we

use an L2-norm penalty to enforce the parameters of each label to

be similar to its parent.

Jparameter =
∑
𝑙 ∈L

∑
𝑙 ′∈Φ(𝑙)

1

2

| |𝒘𝑙 −𝒘𝑙 ′ | |2, (18)

where Φ(𝑙) denotes the set of parent labels of 𝑙 . Intuitively, this

regularization encourages comparable criteria of categories that

are nearby in the hierarchy. For example, judging whether a docu-

ment can be tagged with “Crawling” should bear similarities with

judging whether it is related to its parent label “World Wide Web”.

Regularization in the Output Space. Previous studies on hierar-

chical regularization [17, 38] only consider the “similarity” between

parent and child labels. To be specific, in Eq. (18), the L2-norm is

symmetric on the child 𝑙 and the parent 𝑙 ′. In other words, even

if we swap 𝑙 and 𝑙 ′, the regularization term for𝒘𝑙 and𝒘𝑙 ′ remains

unchanged. This could be insufficient to capture the asymmetry

between parent and child labels. To address this issue, inspired by

the distributional inclusion hypothesis (DIH) [16], we propose a

novel regularization term to characterize the hypernym-hyponym

relationships.

Definition 3.2. (Distributional Inclusion Hypothesis [16]) If
the meaning of a word𝑤1 entails another word𝑤2, then it is expected
that all the typical contexts of𝑤1 will also occur with𝑤2.

According to this definition, 𝑤2 is viewed as a hypernym (i.e.,

parent) and𝑤1 is viewed as a hyponym (i.e., child). Note that one

can interpret DIH in various ways depending on how “contexts”

are defined. For example, if “contexts” are defined as documents



[45], then DIH states that: if a word (e.g., “Crawling”) appears in a

document, then its parent (e.g., “World Wide Web”) is also expected
to be in that document. In contrast, if “contexts” are defined based

on the local context window (i.e., the previous and the latter words

in a sequence) [46], then DIH becomes: if a context word 𝑐 occurs

𝑛 times in the context window of a child𝑤1, then it is expected to

occur no less than 𝑛 times in the context window of its parent𝑤2.

DIH is a classic tool in constructing topic taxonomies [44, 45], which

motivates us to propose the following DIH-based regularization.

In the document classification task, the hypernym 𝑤2 and hy-

ponym𝑤1 become the parent label 𝑙 ′ and child label 𝑙 , respectively.

We define the “contexts” of a label 𝑙 to be the documents tagged

with 𝑙 . From this perspective, DIH can be interpreted as: if a doc-

ument 𝑑 belongs to the child class 𝑙 with probability π𝑑𝑙 , then it

should belong to the parent class 𝑙 ′ with probability no less than

π𝑑𝑙 . For example, if there is a 50% chance a paper will be labeled

with “Crawling”, then the chance to tag this paper with “World
Wide Web” should be at least 50%. Formally, the regularization term

is defined as

Joutput =
∑
𝑑∈D

∑
𝑙 ∈L

∑
𝑙 ′∈Φ(𝑙)

max

(
0, π𝑑𝑙 − π𝑑𝑙 ′

)
. (19)

Unlike the parameter regularization, Eq. (19) is asymmetric: π𝑑𝑙 >
π𝑑𝑙 ′ will incur a penalty, but π𝑑𝑙 ′ > π𝑑𝑙 will not.

Based on the BCE loss and the two proposed regularization terms,

we use the following objective to learn the parameters of our neural

architecture:

minJ = JBCE + 𝜆1Jparameter + 𝜆2Joutput, (20)

where 𝜆1 and 𝜆2 are two hyperparameters.

4 EXPERIMENTS
4.1 Setup
Datasets. We evaluate our method on two large-scale datasets.

• MAG-CS [54]. TheMicrosoft Academic Graph (MAG) has a web-

scale collection of scientific papers covering a broad spectrum

of academic disciplines. As of February 2021, it has more than

251 million academic papers and over 729 thousand labels. MAG

has also performed author name disambiguation and represented

each author with a unique ID. Based on MAG, we construct a

dataset focusing on the computer science domain. Specifically,

we select papers published at 105 top CS conferences
4
from 1990

to 2020. MAG has a high-quality label taxonomy constructed

semi-automatically [44]. For each selected paper, we remove its

labels that are not in the CS domain (i.e., not descendants of

“Computer Science” in the taxonomy). We also remove the root

label “Computer Science” which is trivial to predict. After paper
selection and label filtering, we obtain 705,407 documents and

15,809 labels. We refer to this dataset as MAG-CS.

• PubMed [30]. PubMed comprises more than 30 million articles

(abstracts) of biomedical literature from MEDLINE, life science

journals, and online books. In our experiment, we focus on papers

published in 150 top journals in medicine
5
from 2010 to 2020.

4
https://github.com/microsoft/mag-covid19-research-examples/blob/master/src/

MAG-Samples/impact-of-covid19-on-the-computer-science-research-community/

TopCSConferences.txt

5
https://academic.microsoft.com/journals/71924100

Table 1: Dataset statistics.

MAG-CS [48] PubMed [30]
# Training Docs 564,340 718,837

# Validation Docs 70,534 89,855

# Testing Docs 70,533 89,854

# Labels 15,809 17,963

# Labels / Doc 5.60 7.78

Vocabulary Size 425,316 776,975

# Words / Doc 126.33 198.97

# Authors 818,927 2,201,919

# Venues 105 150

# Paper-Author Edges 2,274,546 5,989,142

# Paper-Venue Edges 705,407 898,546

# Paper-Paper Edges 1,518,466 4,455,702

# Edges in Taxonomy 27,288 22,842

# Layers of Taxonomy 6 15

For each paper selected from PubMed, we find it in MAG so that

we can obtain its disambiguated author, venue, and reference

information. Each PubMed paper is tagged with related MeSH

terms [10], which are viewed as labels in our task. In the MeSH

hierarchy, we focus on the first 8 top-level categories (i.e., A–H)
6
.

After selection, we have 898,546 documents and 17,693 labels.

For both datasets, we use 80% of the documents for training,

10% for validation, and 10% for testing. The text information of

each document is its title and abstract; the metadata information

includes authors, venue, and references. Table 1 summarizes the

statistics of the two datasets.

Compared Methods. We compare the following approaches in-

cluding both extreme multi-label text classification methods as well

as Transformer-based models.

• XML-CNN [27] is an extreme multi-label text classification

method based on convolutional neural networks. It modifies

Kim-CNN [25] by introducing a dynamic max-pooling scheme, a

bottleneck layer, and the BCE loss.

• MeSHProbeNet [59]was originally designed for tagging biomed-

ical documents with relevant MeSH terms. It can also be applied

to a general multi-label text classification setting. MeSHProbeNet

models text sequences using recurrent neural networks and uses

multiple MeSH “probes” to extract information from RNN hidden

states.

• AttentionXML [63] is an extreme multi-label text classification

method built upon a bidirectional RNN layer and a label-aware

attention layer. It also leverages hierarchical label trees to recur-

sively warm-start the model.

• Transformer [53] is a fully connected attention-based model.

Since we have massive training data in both datasets, we train

a Transformer encoder from scratch using text classification as

the downstream task. Following [28], after getting the output

representation of all tokens, we average them to get document

representation and pass it through a fully connected layer to

perform multi-label classification.

6
https://meshb.nlm.nih.gov/treeView

https://github.com/microsoft/mag-covid19-research-examples/blob/master/src/MAG-Samples/impact-of-covid19-on-the-computer-science-research-community/TopCSConferences.txt
https://github.com/microsoft/mag-covid19-research-examples/blob/master/src/MAG-Samples/impact-of-covid19-on-the-computer-science-research-community/TopCSConferences.txt
https://github.com/microsoft/mag-covid19-research-examples/blob/master/src/MAG-Samples/impact-of-covid19-on-the-computer-science-research-community/TopCSConferences.txt
https://academic.microsoft.com/journals/71924100
https://meshb.nlm.nih.gov/treeView


Table 2: Performance of compared algorithms onMAG-CS. *: significantly worse thanMATCH (p-value < 0.05). **: significantly
worse thanMATCH (p-value < 0.01).

Algorithms P@1=NDCG@1 P@3 P@5 NDCG@3 NDCG@5
XML-CNN [27] 0.8656 ± 0.0006** 0.7028 ± 0.0010** 0.5756 ± 0.0010** 0.7842 ± 0.0009** 0.7407 ± 0.0009**

MeSHProbeNet [59] 0.8738 ± 0.0016** 0.7219 ± 0.0059** 0.5927 ± 0.0075** 0.8020 ± 0.0048** 0.7588 ± 0.0067**

AttentionXML [63] 0.9035 ± 0.0009** 0.7682 ± 0.0017** 0.6441 ± 0.0020 0.8489 ± 0.0016** 0.8145 ± 0.0020**

Star-Transformer [20] 0.8569 ± 0.0011** 0.7089 ± 0.0010** 0.5853 ± 0.0011** 0.7876 ± 0.0008** 0.7486 ± 0.0011**

BERTXML [58] 0.9011 ± 0.0027** 0.7532 ± 0.0015** 0.6238 ± 0.0020* 0.8355 ± 0.0025** 0.7954 ± 0.0024**

Transformer [53] 0.8805 ± 0.0007** 0.7327 ± 0.0006** 0.6024 ± 0.0010** 0.8129 ± 0.0008** 0.7703 ± 0.0010**

MATCH-NoMetadata 0.9041 ± 0.0012** 0.7640 ± 0.0010* 0.6376 ± 0.0002* 0.8440 ± 0.0012** 0.8068 ± 0.0005**

MATCH-NoHierarchy 0.9114 ± 0.0014* 0.7634 ± 0.0012** 0.6312 ± 0.0013** 0.8486 ± 0.0006** 0.8076 ± 0.0009**

MATCH 0.9190 ± 0.0012 0.7763 ± 0.0023 0.6457 ± 0.0030 0.8610 ± 0.0022 0.8223 ± 0.0030

Table 3: Performance of compared algorithms on PubMed. *: significantly worse thanMATCH (p-value < 0.05). **: significantly
worse thanMATCH (p-value < 0.01).

Algorithms P@1=NDCG@1 P@3 P@5 NDCG@3 NDCG@5
XML-CNN [27] 0.9084 ± 0.0004** 0.7182 ± 0.0007** 0.5857 ± 0.0004** 0.7790 ± 0.0007** 0.7075 ± 0.0005**

MeSHProbeNet [59] 0.9135 ± 0.0021 0.7224 ± 0.0066* 0.5878 ± 0.0070* 0.7836 ± 0.0057* 0.7109 ± 0.0065*

AttentionXML [63] 0.9125 ± 0.0003* 0.7414 ± 0.0017* 0.6169 ± 0.0016 0.7979 ± 0.0013* 0.7341 ± 0.0013

Star-Transformer [20] 0.8962 ± 0.0023** 0.6990 ± 0.0014** 0.5641 ± 0.0008** 0.7612 ± 0.0015** 0.6869 ± 0.0011**

BERTXML [58] 0.9144 ± 0.0014* 0.7362 ± 0.0046* 0.6032 ± 0.0050* 0.7949 ± 0.0038* 0.7247 ± 0.0045*

Transformer [53] 0.8971 ± 0.0050* 0.7299 ± 0.0029** 0.6003 ± 0.0018** 0.7867 ± 0.0034** 0.7178 ± 0.0027**

MATCH-NoMetadata 0.9153 ± 0.0022 0.7408 ± 0.0035* 0.6080 ± 0.0036** 0.7987 ± 0.0031* 0.7290 ± 0.0034*

MATCH-NoHierarchy 0.9151 ± 0.0022 0.7425 ± 0.0041 0.6104 ± 0.0047 0.8001 ± 0.0037 0.7310 ± 0.0044

MATCH 0.9168 ± 0.0013 0.7511 ± 0.0029 0.6199 ± 0.0029 0.8072 ± 0.0027 0.7395 ± 0.0029

• Star-Transformer [20] simplifies Transformer by sparsifying

fully connected attention to a star-shaped structure. This sparsi-

fication leads to performance improvement on moderately sized

training sets.

• BERTXML [58] is a model inspired by BERT [12]. It utilizes

a multi-layer Transformer structure and adds multiple [CLS]

symbols in front of the input sequence to obtain the aggregate

sequence representation.

• MATCH is our proposedmodel withmetadata-aware pre-training,

metadata-aware Transformer encoding, and hypernymy regular-

ization.

• MATCH-NoMetadata is an ablation version of the fullMATCH
model without using metadata information in both pre-training

and Transformer layers.

• MATCH-NoHierarchy is an ablation version of the fullMATCH
model without hypernymy regularization.

Implementation and Hyperparameters. For all compared algo-

rithms, the embedding dimension 𝛿 is 100. We use GloVe.6B.100d

[40] as initialized word embeddings for all models except MATCH
andMATCH-NoHierarchy (whose initialized embeddings are learned

from metadata-aware pre-training). The training process is per-

formed using Adam [26] with a batch size of 256. The baselines are

implemented in two GitHub repositories
7 8

. We directly use their

default parameter settings when running the baselines.

For our MATCH framework, we set the margin of embedding

pre-training 𝛾 = 0.3, number of attention heads 𝑘 = 2, number of

[CLS] tokens 𝐶 = 8, number of Transformer layers 𝐿 = 3, and the

dropout rate to be 0.1.

7
https://github.com/XunGuangxu/CorNet

8
https://github.com/Tencent/NeuralNLP-NeuralClassifier

Evaluation Metrics. In many multi-label classification datasets,

even if the label space is large, each document only has very few

relevant labels. For example, in Table 1, we show that both MAG-

CS and PubMed have over 15K labels in total, but each document

has 5.60 and 7.78 labels on average, respectively. Considering the

sparsity of labels, a short-ranked list of potentially relevant labels

for each testing document is commonly used to represent classifi-

cation quality. Following previous studies on extreme multi-label

text classification [27, 58, 63], we adopt two rank-based metrics:

the precision at top 𝑘 (P@𝑘) and the normalized Discounted Cumu-

lative Gain at top 𝑘 (NDCG@𝑘), where 𝑘 = 1, 3, 5. For a document

𝑑 , let 𝒚𝑑 ∈ {0, 1} |L | be its ground truth label vector and rank(𝑖) be
the index of the 𝑖-th highest predicted label according to the output

probability 𝛑𝑑 . Then, P@𝑘 and NDCG@𝑘 are formally defined as

P@𝑘 =
1

𝑘

𝑘∑
𝑖=1

𝑦𝑑,rank(𝑖) .

DCG@𝑘 =

𝑘∑
𝑖=1

𝑦𝑑,rank(𝑖)
log(𝑖 + 1) ,

NDCG@𝑘 =
DCG@𝑘∑min(𝑘, | |𝒚𝑑 | |0)

𝑖=1
1

log(𝑖+1)

.

(21)

It is easy to show that P@1 ≡ NDCG@1 if each document has at

least one true label.

4.2 Performance Comparison
Tables 2 and 3 demonstrate the performance of compared algo-

rithms on MAG-CS and PubMed, respectively. We run each experi-

ment three times with the mean and standard deviation reported.

https://github.com/Tencent/NeuralNLP-NeuralClassifier
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Figure 3: Ablation analysis of metadata.

To measure statistical significance, we conduct a two-tailed paired

t-test to compare MATCH and each baseline. The significance level

of each result is marked in the tables.

On MAG-CS, as we can observe from Table 2: (1)MATCH con-

sistently outperforms all baseline approaches. In almost all cases,

the gap is statistically significant, with only one exception where

P@5 of AttentionXML is close to that of MATCH. (2) MATCH
also significantly outperforms the two ablation versionsMATCH-
NoMetadata and MATCH-NoHierarchy. This observation validates

our claim that both metadata and hierarchy signals are beneficial

to the classification performance. (3) Although Star-Transformer is

shown to be more effective and efficient than the standard Trans-

former for modestly sized training sets [20], its simplified structure

is less capable of fitting large-scale training sets. The comparison

between Star-Transformer and Transformer in Table 2 shows that

MAG-CS is large enough to train a fully connected Transformer ar-

chitecture from scratch. (4) The standard Transformer outperforms

two dedicated multi-label text classification approaches, XML-CNN

and MeSHProbeNet, which demonstrates the advantage of Trans-

former’s fully connected attention mechanism over CNN and RNN

architectures on MAG-CS. Built upon Transformer, MATCH can

also outperformXML-CNN andMeSHProbeNet, evenwithout meta-

data information.

On PubMed,MATCH still performs the best among all compared

approaches, and most observations from Table 2 hold in Table

3. However, we would like to emphasize one unique finding: the

contribution of hypernymy regularization is no longer significant

on PubMed. To be specific, on MAG-CS, MATCH has an average

absolute improvement of 1.2% on the five metrics in comparison

withMATCH-NoHierarchy; on PubMed, the improvement becomes

0.7%. We believe this is due to different labeling patterns on the

two datasets. As we can see, the effect of hypernymy regularization

depends on the correlation between parent and child labels. In fact,

when a document is tagged with a child label, we expect it will be

labeled with its parents as well. However, this assumption is not

often correct on PubMed as sometimes human annotators will only

select those more specific categories to annotate the document.

On MAG-CS, the assumption holds in more cases because each

document is guaranteed to have at least one layer-1 label.

4.3 Effect of Metadata
In both datasets, we have three types of metadata information:

authors, venue, and references. To check whether each of them is

useful, we conduct an ablation analysis to study the performance

change when MATCH is blind to one type of metadata. To do

this, we create three ablation versions of MATCH: No-Author,
No-Venue, and No-Reference. For No-Author, we remove author

information from the input metadata M𝑑 of each document 𝑑 .

Similarly, we can define No-Venue and No-Reference.

Figure 3 depicts the comparisons between MATCH and its three

ablations. We observe that: (1) The fullMATCHmodel outperforms

No-Author, No-Venue, and No-Reference in most cases, indicating

that all three types of metadata play a positive role in the classifi-

cation process. (2) Among the three ablation versions, No-Venue

consistently performs the worst. In other words, venue information

has the largest contribution. In fact, when 𝑘 = 1, the contribution of

authors and references to P/NDCG@𝑘 is quite subtle, while venue

signals have an evident offering. To explain this, we recall the hy-

pernymy regularization inspired by DIH. We expect the predicted

probability of a parent category to be no less than that of its chil-

dren. Thus, the more general a label is, the higher probability it is

expected to have. That being said, layer-1 categories are assumed

to be ranked higher in the prediction list. Therefore, as strong indi-

cators of coarse-grained classes (e.g., “Data Mining” and “Natural
Language Processing”), venues are expected to be most helpful to

predict the higher-ranked labels. Since venues already give enough

hints, overlooking authors or references will not lead to a visible

performance drop when 𝑘 = 1. (3) As 𝑘 increases, the contribution

of authors and references becomes larger. For example, on PubMed,

the difference of P@1 between Full and No-Author is 0.1%, but the

difference of P@5 becomes 0.9%. This is because venues are less

beneficial to the prediction of fine-grained categories (e.g., “Named
Entity Recognition” and “Entity Linking”), but authors and
references may provide such signals.

4.4 Effect of Embedding Pre-Training
We have shown the positive contribution of leveraging different

types ofmetadata inMATCH, which is a combined effect ofmetadata-

aware embedding pre-training and metadata-aware Transformer

encoding. Now we would like to show the advantages of embed-

ding pre-training alone. To facilitate this, we create another ablation

version, MATCH-NoPreTrain, which bypasses metadata-aware

embedding pre-training and directly uses GloVe.6B.100d as initial-

ized embeddings of our neural classifier.

Figure 4 demonstrates the performance of MATCH andMATCH-
NoPreTrain during the training process. The x-axis represents train-

ing epochs. In Figures 4(a) and (c), the y-axis is the average training

loss of the last 100 batches in epoch 𝑥 . In Figures 4(b) and (d), the
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Figure 4: Performance of MATCH during the training pro-
cess with and without metadata-aware embedding pre-
training.

y-axis represents NDCG@𝑘 (𝑘 = 1, 3, 5) of the trained classifier

on the validation set after epoch 𝑥 . The full model is denoted by

solid lines and NoPreTrain is denoted by dashed lines. We can ob-

serve that: (1) In earlier epochs, the full model achieves evidently

higher NDCG@𝑘 scores and lower training loss than NoPreTrain,

indicating that embedding pre-training provides a warm start to

neural classifier training. This is intuitive because the embeddings

of metadata instances and words unseen in GloVe.6B.100d need to

be randomly initialized in MATCH-NoPreTrain. As training pro-

ceeds, the performance of NoPreTrain becomes on par with that of

the full model, which means metadata-aware pre-training cannot

significantly boost the final NDCG@𝑘 scores. The reason could

be that our Transformer-based encoder already captures higher-

order information than the pre-training step does (as mentioned

in Section 3.2), which makes up for the cold start caused by ran-

dom initialization. (2) The NDCG@𝑘 curves of both models con-

verge before epoch 11. On MAG-CS, the full model achieves its best

NDCG@1 at epoch 7 while NoPreTrain gets the highest NDCG@1

at epoch 10. On PubMed, the peak NDCG@1 scores of MATCH and

MATCH-NoPreTrain are at epoch 7 and epoch 8, respectively. To

summarize, on both datasets, the full model converges earlier than

NoPreTrain in terms of precision on the validation set. In other

words, metadata-aware pre-training increases the speed of model

convergence in MATCH.

4.5 Case Study
We now conduct case studies to qualitatively understand the effects

of incorporating metadata and the label hierarchy. Table 4 compares

the fullMATCHmodel withMATCH-NoHierarchy and Transformer

on the predictions of three MAG-CS papers. For each paper, we

show its text, (part of) metadata/hierarchy information, ground

truth labels as well as top-5 predicted labels of the three compared

approaches. Recall that MATCH-NoHierarchy does not use any

Table 4: Case Study on MAG-CS. Orange: Incorrect predic-
tions. Blue: Correct predictions when utilizing metadata,
and the corresponding signals. Green: Correct predictions
when utilizing the hierarchy, and the corresponding signals.

Case 1: Effect of Metadata
Title: Improving Text Categorization Methods for Event Tracking

Venue: SIGIR (2000)

Authors: Yiming Yang, Tom Ault, Thomas Pierce, Charles W. Lattimer

Abstract: Automated tracking of events from chronologically ordered document

streams is a new challenge for statistical text classification. Existing learning

techniques must be adapted or improved in order to effectively handle difficult situ-

ations where the number of positive training instances per event is extremely small,

the majority of training documents are unlabelled, and most of the events have a

short duration in time. We adapted several supervised text categorization methods,

specifically several new variants of the k-Nearest Neighbor (kNN) algorithm ...

Ground Truth Labels: Data Mining, Machine Learning, Information
Retrieval, K Nearest Neighbors Algorithm, Pattern Recognition
Top-5 Predictions of Transformer: K Nearest Neighbors Algorithm (✓),
Data Mining (✓), Pattern Recognition (✓), Machine Learning (✓),
Nearest Neighbor Search (✗)
Top-5 Predictions of MATCH-NoHierarchy: K Nearest Neighbors
Algorithm (✓), Data Mining (✓), Pattern Recognition (✓),
Information Retrieval (✓), Machine Learning (✓)
Top-5 Predictions of MATCH: K Nearest Neighbors Algorithm (✓), Data
Mining (✓), Information Retrieval (✓), Pattern Recognition (✓),
Machine Learning (✓)

Case 2: Effect of Hierarchy
Title: Automatic Derivation of a Phoneme Set with Tone Information for Chinese

Speech Recognition Based on Mutual Information Criterion

Venue: ICASSP (2006)

Abstract: An appropriate approach to model tone information is helpful for build-

ing Chinese large vocabulary continuous speech recognition system.We propose to

derive an efficient phoneme set of tone-dependent sub-word units to build a recog-

nition system, by iteratively merging a pair of tone-dependent units according to

the principle of minimal loss of the mutual information. The mutual information is

measured between the word tokens and their phoneme transcriptions in a training

text corpus, based on the system lexical and language model. ...

Hypernymy Information: parents( Language Model ) = { Artificial
Intelligence, Speech Recognition, Natural Language Processing }

Ground Truth Labels: Vocabulary, Homophone, Natural Language, Audio
Mining, Speech Recognition, Natural Language Processing, Word Error
Rate, Language Model, Text Corpus, Pattern Recognition, Mutual
Information
Top-5 Predictions of Transformer: Speech Recognition (✓),
Discriminative Model (✗), Language Model (✓), Mutual Information
(✓), Vocabulary (✓)
Top-5 Predictions of MATCH-NoHierarchy: Mutual Information (✓),
Speech Recognition (✓), Vocabulary (✓), Discriminative Model (✗),
Language Model (✓)
Top-5 Predictions of MATCH: Text Corpus (✓), Speech Recognition
(✓), Language Model (✓), Mutual Information (✓), Natural Language
Processing (✓)

Case 3: An Error of MATCH
Title: The Winograd Schema Challenge and Reasoning about Correlation

Venue: AAAI (2015)
Abstract: The Winograd Schema Challenge is an alternative to the Turing Test

that may provide a more meaningful measure of machine intelligence. It poses a

set of coreference resolution problems that cannot be solved without human-like

reasoning. In this paper, we take the view that the solution to such problems lies in

establishing discourse coherence. Specifically, we examine two types of rhetorical

relations that can be used to establish discourse coherence: positive and negative

correlation. We introduce a framework for reasoning about correlation ...

Ground Truth Labels: Coreference, Artificial Intelligence, Natural
Language Processing, Winograd Schema Challenge, Turing Test
Top-5 Predictions of Transformer: Turing Test (✓), Winograd Schema
Challenge (✓), Natural Language Processing (✓), Coreference (✓),
Artificial Intelligence (✓)
Top-5 Predictions of MATCH-NoHierarchy: Winograd Schema Challenge
(✓), Turing Test (✓), Coreference (✓), Machine Learning (✗),
Artificial Intelligence (✓)
Top-5 Predictions of MATCH: Turing Test (✓), Winograd Schema
Challenge (✓), Coreference (✓), Machine Learning (✗), Artificial
Intelligence (✓)



label hierarchy information, and Transformer is unaware of both

metadata and the hierarchy.

In Case 1, the paper has a ground truth label “Information
Retrieval”. Although the term “retrieval” does not explicitly ap-

pear in the title and abstract, metadata signals (especially the venue

“SIGIR” and one of the authors “Yiming Yang”) successfully indi-

cate the paper’s relevance to “Information Retrieval”. However,
Transformer fails to predict “Information Retrieval” in its top-5

choices as it is blind to metadata. Instead, it makes a wrong pre-

diction “Nearest Neighbor Search”. In contrast, both MATCH
and MATCH-NoHierarchy can observe metadata information, thus

both of them correctly pick “Information Retrieval”.
In Case 2, the paper is related to a fine-grained topic “Language

Model” and a broader category “Natural Language Processing”.
As the paper mentions “language model” and related terms in its ab-

stract, the three compared approaches all include “Language Model”
correctly in their top-5 choices. According to the hypernymy infor-

mation, we can see three parent categories of “Language Model”,
which are “Artificial Intelligence”, “Speech Recognition”,
and “Natural Language Processing”. The last two are in the

ground truth labels of this paper. Unlike “Speech Recognition”
which can be easily inferred from the title, “Natural Language
Processing” can be neither found in the text nor indicated by the

venue. Therefore, “Natural Language Processing” is missed by

Transformer andMATCH-NoHierarchy. In contrast, by observing

the hierarchy information, MATCH successfully picks “Natural
Language Processing” in its top-5 predictions.

Case 1 and Case 2 reflect the benefit of considering metadata

and the hierarchy, respectively. However, in a few cases, such addi-

tional signals may also confuse our model. We show an error made

by MATCH in Case 3. The paper is about the Winograd Schema

Challenge. Transformer successfully predicts all ground truth la-

bels in its top-5 choices. However, both MATCH-NoHierarchy and

MATCH give a wrong prediction “Machine Learning”, probably
because the paper is published at AAAI which has many machine

learning studies. In fact, the paper is purely based on formal logical

reasoning and has no machine learning related component. This

case implies an interesting future direction on how to automatically

select topic-indicative metadata instances to help classification.

5 RELATEDWORK
Multi-label Text Classification. Traditional multi-label text clas-

sification approaches mainly use bag-of-words representations

and can be divided into three categories: (1) One-vs-all methods

[3, 61, 62] exploit data sparsity to learn a classifier for each label

independently. (2) Tree-based approaches [22, 41, 42, 47] recur-

sively partition the feature space at each non-leaf node and learn

a classifier focusing on only a few active labels at each leaf node.

(Note that they are hierarchically partitioning the feature space

instead of the label space, thus cannot be viewed as conventional

hierarchical text classification methods.) (3) Embedding-based ap-

proaches [5, 9, 19, 49] represent labels as low-dimensional vectors

and perform classification by finding the nearest label neighbors of

each document in the latent space. Recently, deep learning based

methods leverage deep neural architectures to learn better text rep-

resentations. For example, Liu et al. [27] propose a convolutional

neural network with dynamic pooling and a hidden bottleneck

layer for text encoding. Nam et al. [36] leverage recurrent neural

networks to encode text sequences and generate predicted labels

sequentially. You et al. [63] adopt attention models to capture the

most relevant parts of the input text to each label. Chang et al. [8]

utilize pre-trained Transformers as neural matchers to perform clas-

sification. There are also multi-label classifiers specifically designed

for biomedical literature such as DeepMeSH [39], MeSHProbeNet

[59], and FullMeSH [11], where the task is named as MeSH indexing.

However, all these models are designed for a flat label space and

do not consider the hierarchical dependencies and intercorrelation

between labels, while ourMATCH introduces hypernymy guided

regularization.

Hierarchical Text Classification. Hierarchical text classification
aims to leverage label hierarchies to improve classification perfor-

mance. Early approaches such as Hierarchical SVM [15, 29] assume

the hierarchy has a tree structure and adopt a top-down training

strategy. In contrast, bottom-up methods [4] backpropagate the

labels from the leaves to the top layer. To further exploit the parent-

child relationships between labels, Gopal and Yang [17, 18] intro-

duce a recursive regularization to encourage the similarity between

child classifiers and their parent classifier. Peng et al. [38] further

extend this regularization to graph neural networks. Wehrmann

et al. [56] combine the ideas of training a local classifier per level

and adopting global optimization techniques to mitigate exposure

bias. Huang et al. [21] further improve Wehrmann et al.’s model

by introducing label attention per level. The global structure of

hierarchies is also used in various models by other studies, such

as meta-learning [57], reinforcement learning [31] and tree/graph

based neural networks [68]. However, all approaches mentioned

above only consider classifying plain text sequences. For documents

with rich metadata information, our MATCH uses pre-training and

attention mechanisms to make full use of metadata.

Metadata-Aware Text Classification. Some previous studies try

to incorporate metadata information for specific classification tasks.

For example, Tang et al. [50] leverage user and product informa-

tion for review sentiment analysis. Zhang et al. [66] employ user

biography data for tweet localization. Zhang et al. [67] use both the

creator and the repository tags for GitHub repository classification.

To solve general classification tasks, Kim et al. [24] inject cate-

gorical metadata signals into a deep neural classifier as additional

features. There are also studies considering weakly supervised set-

tings. Zhang et al. [64, 65] propose to generate synthesized training

samples with the help of metadata-aware representation learning.

Mekala et al. [33] incorporate metadata as additional supervision

for text classification with seed words only. However, in these stud-

ies, each document is assigned to only one category, and the label

space is usually small.

6 CONCLUSION AND FUTUREWORK
We present MATCH, a multi-label text classification framework

that simultaneously leverages metadata and label hierarchy sig-

nals. The framework is featured by a metadata-aware embedding

pre-training module, a metadata-aware Transformer encoder, and a

hypernymy regularization module. The pre-training module learns

better text and metadata representations by characterizing their



relationships in a joint embedding space. The Transformer encoder

facilitates higher-order interactions between words and metadata.

The hypernymy regularization terms model the similarity and the

inclusive relationship between parent and child categories. Exper-

imental results demonstrate the superiority of MATCH towards

competitive baselines. Moreover, we validate the contribution of in-

corporating metadata and label hierarchy through ablation analysis

and case studies.

There are several future directions in light of our model design

and experiments. First, it is interesting to study the contribution

of various metadata in different domains (e.g., product reviews,

encyclopedia webpages, etc.) and how to automatically select the

metadata that is helpful to the classification task. Second, we may

look for more complicated document encoder architectures that can

consider the types of metadata as well as the hierarchy information.
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