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Explosion of Scientific Text Data
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• The volume of scientific publications is growing exponentially.

• Doubling every 12 years [1]

• Reaching 240,000,000 in 2019 [2]

• Papers on emerging topics can be released in a torrent.

• About 4,000 peer-reviewed papers on COVID-19 before 
the end of April 2020 [3]

• How to prevent researchers from drowning in the whole 
literature?

[1] “A Century of Science: Globalization of Scientific Collaborations, Citations, and Innovations.” KDD 2017.
[2] “Microsoft Academic Graph: When Experts are Not Enough.” Quantitative Science Studies 2020.
[3] https://www.economist.com/science-and-technology/2020/05/07/scientific-research-on-the-coronavirus-
is-being-released-in-a-torrent 

https://www.economist.com/science-and-technology/2020/05/07/scientific-research-on-the-coronavirus-is-being-released-in-a-torrent
https://www.economist.com/science-and-technology/2020/05/07/scientific-research-on-the-coronavirus-is-being-released-in-a-torrent


How can text mining help scientific discovery?

Retrieving and Analyzing Relevant Literature Uncovering Knowledge Structures
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• Example tasks:

• Predict the diseases, chemicals, and viruses 
relevant to each paper.

• Retrieve papers relevant to both 
“Betacoronavirus” and “Paxlovid”.

• Find papers refuting the claim “CX3CR1 
impairs T cell survival”.

• Example tasks:

• Find protein entities relevant to 
“Parkinson's disease” from relevant 
literature.

• Predict the relationship between 
“Tremor” and “Sleeping Disorder”.



How can text mining help scientific discovery?

Generating Hypotheses and Suggesting Directions Reviewing Research Outcomes
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• Example tasks:

• Generate a new hypothesis based on the 100 
most recent papers on “Polypharmacy Side 
Effects”.

• Evaluate the novelty of an idea for modeling 
“Polypharmacy Side Effects” in comparison with 
previous studies.

• Example tasks:

• Find qualified reviewers to review a 
submission.

• Provide constructive feedback to a 
paper draft.



Pre-trained Language Models (PLMs) for Text Mining
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• A unified model to perform different text 
mining tasks with a few or zero examples

• I went to the zoo to see giraffes, lions, 
and {zebras, spoon}. (Lexical 
semantics)

• I was engaged and on the edge of my 
seat the whole time. The movie was 
{good, bad}. (Text classification)

• The word for “pretty” in Spanish is 
{bonita, hola}. (Translation)

• 3 + 8 + 4 = {15, 11} (Math)
• …

Are PLMs aware of graph information?



Graph Information Associated with Scientific Text
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Metadata/Network Knowledge GraphHierarchy/Taxonomy

In-Document Structure

Penicillin G Sodium is 
the sodium salt form 
of benzylpenicillin.

Text-Paired Molecule 



PLMs may not be graph-aware!

7ChatGPT 3.5, queried on Jan 23, 2024

HIN2Vec was 
published in 
CIKM 2017.

HIN2Vec was 
written by 

Tao-yang Fu,
Wang-Chien Lee, 

and Zhen Lei.



Today’s Talk: Overview

Metadata/Network Hierarchy/Taxonomy In-Document Structure

…

Injecting graph information into 
language models

Paper Classification Literature Retrieval Link Prediction

Benefiting fundamental 
scientific text mining tasks

Advanced Scientific Applications
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Facilitating real and complex 
scientific applications



Today’s Talk: Overview
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Part I: Extremely Fine-
Grained Classification

Zhang et al., WWW 2021
Zhang et al., WWW 2022
Zhang et al., WWW 2023
Zhang et al., KDD 2023

Part II: Text-Aware
Link Prediction

Jin, Zhang, Meng, & Han
ICLR 2023

Jin, Zhang, Zhu, & Han
KDD 2023

Part III: Advanced 
Scientific Applications

Zhang et al., EMNLP 2023
Zhang et al., arXiv 2023
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Extremely Fine-Grained Scientific Paper Classification
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• The Microsoft Academic Graph has 740K+ categories.

• The Medical Subject Headings (MeSH) for indexing PubMed papers 
contain 30K+ categories.

• Each paper can be relevant to more than one category (5-15 categories 
for most papers).

• Relevant categories: Betacoronavirus, Cardiovascular Diseases, 
Comorbidity, Coronavirus Infections, Fibrin Fibrinogen Degradation 
Products, Mortality, Pandemics, Patient Isolation, Pneumonia, …



If we could have some training data …
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• We could use relevant (paper, category) pairs to fine-tune a pre-trained language model.

• Both Bi-Encoder and Cross-Encoder are applicable.

Should be large

Bi-Encoder Cross-Encoder

Should be large

• However, human-annotated training samples are NOT available in many cases!

• We are asking annotators to find ~10 relevant categories from ~100,000 candidates!



Using Graph Information to Replace Annotations
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• If relevant (paper, category) pairs are not available, can we automatically create relevant (paper, 
paper) pairs?

• Two papers sharing the same author(s) are assumed to be similar.

• Two papers sharing the same reference(s) are assumed to be similar.

• …

• The notion of meta-paths and meta-graphs



Graph-Induced Text Contrastive Learning
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• Two papers connected via a certain meta-path/meta-graph should be more similar than two 
randomly selected papers.

Bi-Encoder

Should be larger Should be smaller

Cross-Encoder

Should be larger Should be smaller

Zhang et al., “Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification.” WWW 2022.



Comparison with Previous Approaches
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• Dataset: Microsoft Academic Graph and PubMed

• Metric: Precision@1, 3, and 5

Zhang et al., “Metadata-Induced Contrastive Learning for Zero-Shot Multi-Label Text Classification.” WWW 2022.
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• Title: Improving Text Categorization Methods for Event Tracking

• Venue: SIGIR (2000)

• Authors: Yiming Yang, Tom Ault, Thomas Pierce, Charles W. Lattimer

• Abstract: : Automated tracking of events from chronologically ordered document streams is a new 
challenge for statistical text classification. Existing learning techniques must be adapted or 
improved in order to effectively handle difficult situations where the number of positive training 
instances per event …

• Top-5 Predictions of a Text-Only Baseline: K Nearest Neighbors Algorithm (✓), Data Mining (✓), 
Pattern Recognition (✓), Machine Learning (✓), Nearest Neighbor Search (✗)

• Top-5 Predictions of our Metadata-Aware Method: K Nearest Neighbors Algorithm (✓), Data 
Mining (✓), Information Retrieval (✓), Pattern Recognition (✓), Machine Learning (✓)

Case Study
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Which type of nodes is the most helpful?
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• Is the contribution of venues, 
authors, and references to 
paper classification consistent 
across different fields?

• NO! BUT the effects of 
metadata tend to be 
similar in two similar 
fields.

• The experience of using 
metadata in one field can 
be extrapolated to a 
similar field.

Zhang et al., “The Effect of Metadata on Scientific Literature Tagging: A Cross-Field Cross-Model Study.” WWW 2023.



The MAPLE Benchmark
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• Our multi-field scientific literature tagging benchmark has been downloaded 160 times since it was 
published in February 2023.



How about other types of graph information?
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Label Hierarchy

Zhang et al., “MATCH: Metadata-Aware Text Classification in A Large Hierarchy.” WWW 2021.
Zhang et al., “Weakly Supervised Multi-Label Classification of Full-Text Scientific Papers.” KDD 2023.

Top-Down Pruning:

Irrelevant to WWW ⇒ Irrelevant to Crawling

In-Document Structure

Bottom-Up Aggregation:

Paragraphs → Subsections → Sections → Paper
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Text complements graph signals in link prediction, but …
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• We need contextualized text representations rather than bag of words!

OsirisBFT: Say No to 
Task Replication for 
Scalable Byzantine 

Fault Tolerant Analytics

Separating Agreement 
from Execution for 
Byzantine Fault 
Tolerant Services

People and power in 
Byzantium: an 

introduction to modern 
Byzantine studies



PLM+GNN: Cascaded Architecture
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• PLM (text encoding) → GNN (graph aggregation)

Zhu et al. “TextGNN: Improving Text Encoder via Graph Neural Network in Sponsored Search.” WWW 2021.

• Drawback: Graph information is not used when encoding text.



PLM+GNN: Interleaved Architecture

23

• Cascaded Architecture:

• Transformer → Transformer → … → Transformer → GNN

• Interleaved Architecture:

• Transformer → GNN → Transformer → GNN → … → Transformer → GNN

Yang et al. “GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph.” NeurIPS 2021.



Dealing with Heterogeneity
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• Some types of nodes do not have text information!

Jin, Zhang, Zhu, & Han. “Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous 
Text-Rich Networks.” KDD 2023.



Comparison with Previous Approaches
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• Dataset: DBLP

• Metric: Precision@1, MRR, and nDCG

Jin, Zhang, Zhu, & Han. “Heterformer: Transformer-based Deep Node Representation Learning on Heterogeneous 
Text-Rich Networks.” KDD 2023.
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Text Information on Edges
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• One paper cites the other 
paper in a sentence.

• A user write a review for 
an item.

Jin, Zhang, Meng, & Han. “Edgeformers: Graph-Empowered Transformers for Representation Learning on Textual-
Edge Networks.” ICLR 2023.
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Facilitating Complex Tasks for Scientific Discovery 
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Given a patient summary, find 
similar patients/clinical case reports.

Given a scientific claim, find relevant 
papers (and predict their stance).

Given a paper submission, find 
expert reviewers.

• Why are these tasks more complex?

• Multiple factors should be considered when judging the relevance.



Multiple Factors for Judging Relevance
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• Example: Paper-Reviewer Matching

• Why is a pair of (Paper, Reviewer) relevant?

• Multiple factors exist in other tasks (e.g., Patient-to-Article Matching) as well.



Naïve Multi-task Pre-training
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• Each factor (topic, citation, and semantic) relies on one fundamental text mining task.

• Directly combining pre-training data from different tasks to train a model?

(Paper, Label)

(Paper, Paper)

(Query, Paper)

• Task Interference: The model is confused by different types of “relevance”.



An Illustrative Example of Task Interference
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• Recall structure-induced contrastive learning

• Imagine each meta-path/meta-graph is a “task” (i.e., defines one type of “relevance”)

• Directly merging the relevant (paper, paper) pairs induced by different meta-paths for training?

• Cannot consistently improve the classification performance!

(Doc2, Doc3) are relevant according to 
P→P←P but irrelevant according to P(AA)P.



Zhang et al., “Pre-training Multi-task Contrastive Learning Models for Scientific Literature Understanding.” EMNLP 2023 Findings.

Tackling Task Interference: Mixture-of-Experts Transformer

• A typical Transformer layer

• 1 Multi-Head Attention (MHA) sublayer

• 1 Feed Forward Network (FFN) sublayer

• A Mixture-of-Experts (MoE) Transformer layer

• Multiple MHA sublayers

• 1 FFN sublayer

• (Or 1 MHA & Multiple FFN)

• Specializing some parts of the architecture to be 
an “expert” of one task

• The model can learn both commonalities and 
characteristics of different tasks.

32



Tackling Task Interference: Mixture-of-Experts Transformer

Task

33

Graph 
Information

Field
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Zhang et al., “Pre-training Multi-task Contrastive Learning Models for Scientific Literature Understanding.” EMNLP 2023 Findings.

Comparison with Previous Approaches

• New SOTA on the PMC-Patients benchmark (patient-to-article retrieval)

• Outperforming previous scientific pre-trained language models in classification, link prediction, 
literature retrieval (TREC-COVID), paper recommendation, and claim verification (SciFact)

34
https://pmc-patients.github.io/ 

Our Model

TREC-COVID Our
Model

https://pmc-patients.github.io/


Zhang et al., ““Why Should I Review This Paper?” Unifying Semantic, Topic, and Citation Factors for Paper-Reviewer Matching.” 
arXiv 2023.

Tackling Task Interference: Instruction Tuning

• Using a factor-specific 
instruction to guide 
the paper encoding 
process

• The instruction serves 
as the context of the 
paper.

• The paper does NOT 
serve as the context of 
the instruction.

35
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Zhang et al., ““Why Should I Review This Paper?” Unifying Semantic, Topic, and Citation Factors for Paper-Reviewer Matching.” 
arXiv 2023.

Comparison with Previous Approaches

36

• Public benchmark datasets

• Expert C judges whether Reviewer A is qualified to review Paper B.

• Outperforming the Toronto Paper Matching System (TPMS, used by Microsoft CMT)

Our
Model



Language Model on Graphs

37Jin et al., “Large Language Models on Graphs: A Comprehensive Survey.” arXiv 2023.



Scientific Language Models

38



Looking Back to the Motivating Example
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• Can we teach LLMs to explore graphs as environments / use graphs as tools?

What is the most cited 
paper in WWW 2017?

Hallucinating!

Directly generating
the answer

Querying
(e.g., API call)

Augmenting
the input

Dynamic Key-Value 
Memory Networks for 

Knowledge Tracing

Graph

Correct Answer!

Reasoning



Initial Trial: Graph Chain-of-Thoughts
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Our Model



Thank you! Questions?

41
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