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1 Deep contextualized embeddings via neural language models



Overview of Text Representation Development

O Texts need to be represented as numbers/vectors so that computer programs can
process them

O How were texts represented in history?
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Figure from: Liu Z,, Lin Y., Sun M. (2020) Representation Learning and NLP. In: Representation Learning for Natural Language Processing. Springer.



Symbol-Based Text Representations

1 One-to-one correspondence between text units and representation elements

4 E.g., “dogs”=[1,0,0,0,0]; “cats” =[0, 1,0, 0, 0]; “cars” =10, O, 1, O, 0]; “like” =[O, O,
0,1,0];“"=[0,0,0,0, 1]

1 Bag-of-words representation of documents: Describe a document according to which
words are present, ignoring word ordering

J  E.g., “Ilike dogs” may be represented as [1, 0, 0, 1, 1]

- Can further weigh words with Term Frequency (TF) and/or Inverse Document
Frequency (IDF)

d Issues: Many dimensions needed (curse of dimensionality!); vectors do not reflect
semantic similarity



Text Embeddings

4

4

Unsupervised/self-supervised learning of text representations—No annotation needed

Embed one-hot vectors into lower-dimensional space—Address “curse of
dimensionality”
Word embedding captures useful properties of word semantics

- Word similarity: Words with similar meanings are embedded closer

- Word analogy: Linear relationships between words (e.g., king - gueen = man -
woman)
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Word2Vec

d Many text embeddings are learned in the Euclidean space (without constraints on vectors)
1 Word2Vec maximizes the probability of observing a word based on its local contexts
Q As a result, semantically similar terms are more likely to have close embeddings
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Mikolov, T., Sutskever, |., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS.



GloVe

1 GloVe factorizes a global co-occurrence matrix derived from the entire corpus

A Low-dimensional representations are obtained by solving a least-squares problem to
“recover” the co-occurrence matrix
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Pennington, J., Socher, R., & Manning, C.D. (2014). Glove: Global Vectors for Word Representation. EMNLP.
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Hyperbolic Embedding: Poincaré embedding

Notebook

3  Why non-Euclidean embedding space?

- Data can have specific structures that Euclidean-
space models struggle to capture

ad The hyperbolic space

2  Continuous version of trees g A
2 Naturally equipped to model hierarchical .arw ; AN

structures

d Poincaré embedding

=t = e
74| Group ! e
P | Taxonomic Group i N |

- Learn hierarchical representations by pushing
general terms to the origin of the Poincaré ball,
and specific terms to the boundary

Hardwood [,

u, V) = arcos ||u—’v||2
d(u, ) h(”%—||u|12><1—||v||2>)

Nickel, M., & Kiela, D. (2017). Poincaré Embeddings for Learning Hierarchical Representations. NIPS.
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Texts in Hyperbolic $pace: Poincaré GloVe

1 GloVe in hyperbolic space

d Motivation: latent hierarchical structure of words exists among text

2 Hypernym-hyponym
2 Textual entailment
d  Approach: use hyperbolic kernels!
a Effectively model generality/specificity
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Tifrea, A., Bécigneul, G., & Ganea, 0. (2019). Poincaré GloVe: Hyperbolic Word Embeddings. ICLR.
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Directional Analysis for Text Embeddings

d How to use text embeddings? Mostly directional similarity (i.e., cosine similarity)

- Word similarity is derived using cosine similarity

France ball
Ital . .
6 y France - Paris -
9 _____ / .: |
7}
crocodile Rome - Italy
France and ltaly are quite similar ball and crocodile are not similar the tW,O vectors are swmlla‘r but opposite
the first one encodes (city - country)
9 is close to 0° 9 is close to 90° while the second one encodes (country - city)
cos(0)=1 cos(@) =0 @ is close to 180°

cos(8) =—1

- Better clustering performances when embeddings are normalized, and spherical
clustering algorithms are used (Spherical K-means)

- Vector direction is what actually matters!



Issues with Previous Embedding Frameworks

d Although directional similarity has shown effective for various applications, previous
embeddings (e.g., Word2Vec, GloVe) are trained in the Euclidean space

A gap between training space and usage space: Trained in Euclidean space but used on

sphere
) Post-processing
(Normalization)
Embedding Training in Euclidean Space Embedding Usage on the Sphere

(Similarity, Clustering, etc.)

14
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Spherical Text Embedding: Generative Model

d We design a generative model on the sphere that follows how humans write articles:

- We first have a general idea of the paragraph/document, and then start to write

down each word in consistent with not only the paragraph/document, but also the
surrounding words

2 Assume a two-step generation process:

Document/
Paragraph (d)

p(u | d) < exp(cos(u, d))

n
P

Center Word
(u)

p(v | u) x exp(cos(v,u))

X Surrounding Word

(v)

Meng, Y., Huang, J., Wang, G., Zhang, C., Zhuang, H., Kaplan, L.M., & Han, J. (2019). Spherical Text Embedding. NeurlPS.
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Spherical Text Embedding: lllustration

d Understanding the spherical generative model

Step 1 Step 2

Center word semantics
generate local contexts

Global context generates
center word semantics

A computer
graphics document

Step 1 » ~ Document d;

| |
i [
0 |
I ... you create 8 greg/ level images and display them for ... :
: |
0 |

Step 2 == ~--v
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From Static Embedding to Contextualized Embedding

d Previous unsupervised word embeddings like Word2Vec and GloVe learn static
word embedding

- Each word has one representation regardless of specific contexts it appears in
2 E.g., “bank” is a polysemy, but only has one representation

Share representation

1 Deep neural language models overcome this problem by learning contextualized
word semantics



Pre-trained Language Models: Overview

d The “pre-train & finetune” paradigm has become the prominent practice in a wide
variety of text applications

a  “Pre-training”: Train deep language models (usually Transformer models) via self-
supervised objectives on large-scale general-domain corpora

- All Wikipedia articles, all PubMed papers, billions of tweets, ...
d  “Fine-tuning”: Adapt the PLMs to downstream tasks using task-specific data
- Text Classification, question answering, entity recognition, ...

d The power of PLMs: Encode generic linguistic features and knowledge learned through
large-scale pre-training, which can be effectively transferred to the target applications

19
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Categorization of Pre-trained Language Models

4

4

4

In this presentation, we categorize PLMs by architecture which correlates with the task
type PLMs are used for:

Decoder-Only (Unidirectional) PLM: Predict the next token based on previous tokens,
usually used for language generation tasks (e.g., GPT)

Encoder-Only (Bidirectional) PLM: Predict masked/corrupted tokens based on all
other (uncorrupted) tokens, usually used for language understanding/classification
tasks (e.g., BERT, XLNet, ELECTRA)

Encoder-Decoder (Sequence-to-Sequence) PLM: Generate output sequences given
masked/corrupted input sequences, can be used for both language understanding
and generation tasks (e.g., T5, BART)
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GPT-Style Pre-training: Introduction

O Generative Pre-training (GPT [1], GPT-2 [2], GPT-3 [3], GPT-4 [4]): Output: Probabilities over tokens
. : : ¢
d Leverage unidirectional context (usually left-to-right) for next Softmax
token prediction (i.e., language modeling) VAL
Transposed embedding W;r
k previous tokens as context ¥ hy
o 1 [mmmm———————————— ( Add & Layer norm J—
Lim = — E og p(z; |:113z' kye+yLi 1] t
- ememmmmeee e ———— ( Pointwise feed forward )
1
Q The Transformer uses unidirectional attention masks (i.e., every C Add&Liver nom _ )+———
tOken can Only attend to preViOUS tOkenS) ( Masked multi-headed self-attention )
f

a  Unidirectional PLMs can be very, very large (GPT-3 has 175 billion W W,
parameters!) and have very strong text generation abilities (e.g., Embedding matrix W
generated articles make human evaluators difficult to distinguish f
from articles written by humans). Input: x

[1] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. OpenAl blog.
[2] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAl blog, 1(8), 9.
[3] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. NeurlPS.

5y [4] OpenAl. (2023). GPT-4 Technical Report. arXiv preprint arXiv:2303.08774.
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BERT: Masked Language Modeling

Q Bidirectional: BERT leverages a Masked LM learning to introduce real
bidirectionality training

d Masked LM: With 15% words randomly masked, the model learns bidirectional
contextual information to predict the masked words

i [ I [
\: MASK] | | Mask] |
' r 4 l r Y I o, N 4 W B 4 r b
Input [CLS) ] my |[j[ dog [i| is { cute ] [SEP] he [ likes ]( play ] ##ing ] [SEP]
1 | r 1 '
Token : : : :
Embeddings E[CLS} Er‘ny : S : E-s Ecute E[SEP] Ehe : Epunsc : Eplay E, ing E[SEP]
| J | S —— J
+ -+ -+ + -+ + -+ -+ + -+ -+
Sentence
Embedding Es [| Ea || Ea || Ea || Ea || Ea || Es || Ea || Es || Es E,
+ + + + + + + -+ -+ + -+
Transformer
Positional
Emt;;dd?ng EO E1 E2 E3 E4 ES E6 E? ES E9 EIO

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT.
24
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BERT: Next $Sentence Prediction

A Next Sentence Prediction: learn to predict if the second sentence in the pair is the
subsequent sentence in the original document

Class
Label
Le i)~ [nJlmee ) )
E[CL ] E1 EN E[SEP] E1= EM
P N N N N P
I gy B e gy
[em () [ ) [eem )7 - [
| ! I |
| I
Sentence 1 Sentence 2



RoBERTa

d Several simple modifications that make BERT more effective:
Train the model longer, with bigger batches over more data
Remove the next sentence prediction objective

Train on longer sequences

I I i

Dynamically change the masking pattern applied to the training data

SQuAD
(v1.172.0)

Model data bsz steps MNLI-m SST-2

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1

+ pretrain even longer  160GB 8K 500K 94.6/89.4 90.2 96.4
BERTLARGE

with BOOKS + WIKI 13GB 256 1M 90.9/81.8 86.6 93.7
XLNet arce

with BOOKS + WIKI 13GB 256 IM  94.0/87.8 88.4 94.4

+ additional data 126GB 2K 500K 94.5/88.8 89.8 95.6

Liu, Y., Ott, M., Goyal, N., Du, J,, ... & Stoyanov, V. (2019). Roberta: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.
26



ELECTRA

d Change masked language modeling to a more sample-efficient pre-training task,
replaced token detection

d Why more efficient:
- Replaced token detection trains on all tokens, instead of just on those that are masked (15%)
2 The generator trained with MLM is small (parameter size is ~1/10 of discriminator)

- The discriminator is trained with a binary classification task, instead of MLM (classification
over the entire vocabulary)

sample
the —> [MASK] —> -->» the —> —> original
chef — chef — chef — L —> original
Generator Discriminator
cooked —>» [MASK] —> (typically a |-> ate —> (ELECTRA) —> replaced
the —» the —»| small MLM) the —> L5 original
meal —>» meal —> meal —» —> original

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training text encoders as discriminators rather than generators. ICLR.



ELECTRA

0 Better GLUE (General Language Understanding Evaluation) test performance than
previous MLM-based models under the same compute (measured by Floating Point
Operations)

Model Train FLOPs CoLLA SST MRPC STS QQP MNLI QNLI RTE WNLI Avg.* Score

BERT 1.9¢20 (0.06x) 60.5 949 854 86.5 89.3 86.7 927 70.1 65.1 79.8 80.5
RoBERTa 3.2e21 (1.02x) 67.8 96.7 89.8 919 90.2 90.8 954 882 89.0 88.1 88.1
ALBERT  3.1e22 (10x) 69.1 97.1 91.2 920 905 913 - 89.2 918 89.0 -
XLNet 3.9¢21 (1.26x) 70.2  97.1 90.5 92.6 904 909 - 88.5 925 89.1 -

ELECTRA 3.1e2l (1x) 71.7  97.1 90.7 925 90.8 91.3 958 898 925 895 894
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T5

Q T5: Text-to-Text Transfer Transformer
A Pre-training: Mask out spans of texts; generate the original spans
O Fine-Tuning: Convert every task into a sequence-to-sequence generation problem

[President Franklin <M> born <M> January 1882.

D. Roosevelt was <M> in

Lily couldn't <M>. The waitress
had brought the largest <M> of believe her eyes <M>
chocolate cake <M> seen. piece <M> she had ever

OQur <M> hand-picked and sun-dried peaches are <M> at our]
<M= orchard in Georgia.

President Franklin D.
Roosevelt was born
in January 1882.

Pre-training

Fine-tuning

When was Franklin D. I
[ Roosevelt born?

Raffel, C., Shazeer, N., Roberts, A., Lee, K., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR.
30



BART

 BART: Denoising autoencoder for pre-training sequence-to-sequence models

d Pre-training: Apply a series of noising schemes (e.g., masks, deletions, permutations...)
to input sequences and train the model to recover the original sequences

3 Fine-Tuning:

- For classification tasks: Feed the same input into the encoder and decoder, and use the final
decoder token for classification

- For generation tasks: The encoder takes the input sequence, and the decoder generates
outputs autoregressively

????E (AcC. E.) (DE.ABC.) (C.DE.AB)

o i j Token Masking  Sentence Permutation Document Rotation
C Bidirectional Autoregressive @

Encoder Decoder

- > >
A.C.E. ABC.DE. A_.D_E.
EEEY RS CAC.E) B ( ) (@ (A-D-E)
A_B_E <s>A B CD oKen Leletion Text Infilling
BART architecture BART pre-training objectives

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O, ... & Zettlemoyer, L. (2020). BART: Denoising sequence-to-sequence pre-training for

31 natural language generation, translation, and comprehension. ACL.
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How to use PLMs?

d Pre-trained language models (PLMs) are usually trained on large-scale general domain
corpora to learn generic linguistic features that can be transferred to downstream tasks

d Common usages of PLMs in downstream tasks

- Fine-tuning: Update all parameters in the PLM encoder and task-specific layers
(linear layer for standard fine-tuning or MLM layer for prompt-based fine-tuning) to
fit downstream data

- Prompt-based methods: Convert tasks to cloze-type token prediction problems; can
be used for either fine-tuning or zero-shot inference

4

Li, X. L., & Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation. ACL.
Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., ... & Gelly, S. (2019). Parameter-efficient transfer learning for NLP. ICML.
Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2022). LoRA: Low-rank adaptation of large language models. ICLR.
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Standard Fine-Tuning of PLMs

d Add task-specific layers (usually one or two linear layers) on top of the embeddings

produced by the PLMs (sequence-level tasks use [CLS] token embeddings; token-level
tasks use real token embeddings)

d Task-specific layers and the PLMs are jointly fine-tuned with task-specific training data

Class
Label
o) G]G0
[eale]- (o[l [&]
T g g ey iy i g
[cLs] Tf" - T,ek [SEP] T:’“ .. T,ak
Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

(0] B-PER 0]
* &
]
BERT
Ecws = E, E,

E;TJ?:I Start/End Span
- 00—
(¢~ )] - () () ) (W)
BERT BERT
Eicus) E, & Ex ‘EICLSI “ E ‘ ‘ Ex H Eiser) || l ‘ | Ew ‘
ﬁ iy — LT LT LT T
(cLs] To‘k1 Tok 2 | Qm m mm m

Single Sentence Question Paragraph

(b) Single Sentence Classification Tasks:
SST-2, ColLA

(c) Question Answering Tasks:
SQuAD v1.1

I

FEaEn

[
I

Single Sentence

(d) Single Sentence Tagging Tasks:

CoNLL-2003 NER




Prompt-Based Fine-Tuning of PLMs

 Task descriptions are created to convert
- . ( Bestpizzaever! +1 )
training examples to cloze questions l

d  Highly resemble the pre-training tasks et pizza overt 085 | =

(MLM) so that pre-training knowledge could b l o A

>
be better leveraged % 070
: PLM Leg |
: ® 0.65
. . . " _ . | ifi
Q Better than standard fine-tuning especially | 5 - s A
1 e ) . | prompting run
fOr feW'ShOt Settlngs . i‘)’ml"t ’ ::: 0.35 region of comparison
: yad :0.2 .
: : 0 500 1000 1500 2000
T I .......... N training points
+1:0.8
MLM .| great (label:positive) -1:0.2
head (label:negative) v/
Label mapping M())
[ [CLS] No reason to watch . It was [MASK]_. [SEP] A funride. It was great . [SEP] The drama discloses nothing . It was . [SEP] J
F——— Input ————F—— Template ——1 F— Demonstration for label:positive — F——————— Demonstration for label:negative ——————

Schick, T., & Schiitze, H. (2021). Exploiting cloze questions for few shot text classification and natural language inference. EACL.
Le Scao, T., & Rush, A. M. (2021). How many data points is a prompt worth? NAACL.

End of dataset




Prompt-Based Fine-Tuning of PLMs

d  Further improve prompt-based few-shot fine-tuning:
- Prompt templates and label words can be automatically generated
- Demonstrations can be concatenated with target sequences to provide hints

SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)
MajD[’ityT 50.9 23.1 50.0 50.0 50.0 50.0 18.8 0.0
Prompt-based zero-shot! 83.6 35.0 80.8 79.5 67.6 514 32.0 2.0
“GPT-3” in-context learning 84.8 (1.3) 30.6(0.9) 80.5(1.7) 87.4(0.8) 63.8(2.1) 53.6(1.0) 262(24) -1.5Q24)
Fine-tuning 814 (338) 439(20) 76959 758(3.2) 72.0(3.8) 90.8(1.8) 88.8(2.1) 339(14.3)
Prompt-based FT (man) 92.7(09) 474(25) 87.0(1.2) 903(1.0) 84.7(2.2) 91.2(1.1) 848(51) 93(7.3)
+ demonstrations 92.6(0.5) 50.6(1.4) 86.6(2.2) 90.2(1.2) 87.0(1.1) 923(0.8) 875(3.2) 187(8.8)
Prompt-based FT (auto) 92.3(1.0) 492(1.6) 855(2.8) 89.0(1.4) 858(1.9) 91.2(1.1) 88.2(20) 14.0(14.1)
+ demonstrations 93.0 (0.6) 495(1.7) 87.7(1.4) 91.0(09) B86.5(2.6) 91.4(1.8) 894(1.7) 21.8(15.9)
Fine-tuning (full)f 95.0 58.7 90.8 89.4 87.8 97.0 97.4 62.6
MNLI  MNLI-mm SNLI QNLI RTE MRPC QQp STS-B
(acc) (acc) (acc) (acc) (acc) (F1) (F1) (Pear.)
MajUI‘ityT 32.7 33.0 33.8 49.5 52.7 81.2 0.0 -
Prompt-based zero-shot 50.8 51.7 49.5 50.8 513 61.9 49.7 -3.2
“GPT-3” in-context learning  52.0 (0.7) 53.4(0.6) 47.1(0.6) 53.8(04) 604(14) 457(6.0) 36.1(52) 143(2.8)
Fine-tuning 458 (64) 478(6.8) 484(4.8) 60.2(6.5) 544(3.9) 76.6(2.5) 60.7(43) 53.5(8.5)
Prompt-based FT (man) 68.3(23) 705(1.9) 77237 645(42) 69.1(3.6) 745(53) 655(53) 71.0(7.0)
+ demonstrations 70.7 (1.3) 72.0(1.2) 79.7(L5) 69.2(1.9) 68.7(23) 77.8(22.0) 69.8(1.8) 73.5(5.1)
Prompt-based FT (auto) 68.3(25) 70.1(26) 77.1(21) 683(74) 739(22) 762(23) 67.03.0) 750(3.3)
+ demonstrations 70.0(36) 72.0(3.1) 775(3.5) 685(54) 71.1(5.3) 781(34) 67.7(58) 764 (6.2)
Fine-tuning (full)! 89.8 89.5 92.6 93.3 80.9 91.4 81.7 91.9

Gao, T., Fisch, A., & Chen, D. (2021). Making pre-trained language models better few-shot learners. ACL.
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Prompt-Based Zero-Shot Inference

d Even without any training, knowledge can be
extracted from PLMs through cloze patterns

d PLMs can serve as knowledge bases

- Pros: require no schema engineering, and support
an open set of queries

1 Cons: retrieved answers are not guaranteed to be
accurate

A Could be used for unsupervised open-domain QA
systems

Memory Query Answer

(DANTE, born-in, X)
A4
Symbolic

KG DANTE e > FLORENCE
Memory Access

“Dante was born in [MASK]

Neural LM

LM
Memory Access

— Florence

e.g. ELMo/BERT

Figure 1: Querying knowledge bases (KB) and lan-
guage models (LM) for factual knowledge.

Petroni, F., Rocktaschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., & Riedel, S. (2019). Language models as knowledge bases? EMNLP.
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Prompt-Based Few-Shot Inference

1 Large PLMs (e.g., GPT-3) have
strong few-shot learning ability
without any tuning on large task-
specific training sets

1 Generate answers based on
natural language descriptions
and prompts

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French:

cheese =>

Traditional fine-tuning (not used for GPT-3)

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task descriptio

sea otter =>
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

loutre de mer examples

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
plush giraffe => girafe peluche example #N
cheese => prompt
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Zero-Shot Fine-Tuning of PLMs

4

d
d

d

d
d
d

d

Prompt-based approaches have remarkable few-shot fine-tuning performance, but their zero-
shot performance is significantly worse

Without any task-specific samples, it is challenging for PLMs to interpret the prompts that
come in different formats and are unseen in the pre-training data

The current mainstream of zero-shot learning is based on transfer learning

Train PLMs on a large variety of different tasks with abundant annotations, and transfer to
unseen tasks

Require many cross-task annotations and gigantic model sizes which are not practical for
common application scenarios

Can we do fully zero-shot learning, without any task-related or cross-task annotations?
When there are no training data, we can create them from scratch using PLMs!

Humans can generate training data pertaining to a specific label upon given a label-
descriptive prompt (e.g., “write a negative review:”)

We can leverage the strong text generation power of PLMs to do the same job
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Prompt-Based Zero-$hot Training Data Generation

d  SuperGen: A Supervision Generation approach
d Use a unidirectional PLM to generate class-conditioned texts guided by prompts
d Fine-tune a bidirectional PLM on the generated data for the corresponding task

------------------------------

Single-Sequence Tasks N Label Smoothing

Label Y: negative (e.g. Sentiment Classification) Ly . q X

p w Generated Sequence 1 : o :

rompt Wy Selected Quality ! .

[ P ) Generator Gy It is a waste of Training Sample . y Y,
This film is terrible.

(Unidirectional PLM)

time and money.

(9, y) | Regularize;
........................................... - B_Slasf_'f'e"l qubM Fine-Tuning
Label ¥: entailment Sequence-Pair Tasks \ ‘ (Bidirectiona ) A
Sampled Sequence z* (-9 Natural Language Inference) (x*,xdy) ————————— Regularize ,
+ Prompt Wy Generated Sequence x9 Selected Quality : p l Temporal Ensembﬁng

(Unidirectional PLM) open in 2020.

mid-2020. In other words,

The opening date of the
station was estimated to be

Training Sample
Generator Gy ]‘[The station was to] g P '

Meng, Y., Huang, J., Zhang, Y., & Han, J. (2022). Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. NeurlPS.
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Zero-Shot Learning Results

d Using the same prompt-based fine-tuning method, zero-shot SuperGen (fine-tuned

on generated training data) is comparable or even better than strong few-shot

methods (fine-tuned on 32 manually annotated training samples per class)

Method MNLI-(m/mm) QQP QNLI  SST-2 CoLA RTE MRPC AVG
(Acc.) (F1) (Acc.) (Acc.) (Matt.) (Acc.) (F1)

Zero-Shot Setting: No task-specific data (neither labeled nor unlabeled).

Prompting " 50.80.0/51.70.0 49.700 50.800 83.600 2.000 51.300 61.900 50.1

SuperGen 72305!’73805 66.111 73.31_9 92.80_5 32.75_5 65.31,2 82.20_5 69.4
- data selection 63.71.5/64.21 6 62.322 63.932 91.320 30.95 8 62.415 81.60.2 65.1
- label smooth 70708!72 10_7 65.10,9 71.42_5 91.0{}_9 9.51_[} 64.81_1 83.0[}_7 65.2
- temporal ensemble  62.04.6/63.648 63.903 72420 92509 23.570 63.510 78822 65.3

Few-Shot Setting: Use 32 labeled samples/class (half for training and half for development).

Fine-tuningT 45.86.4/47.86.8 60.7T43 60.265 8l.435 339143 5H4.439 76.625 59.1

Manual promptT 68.32.3/70.51.9 65.55.3 64.54 2 92.70.9 9.37.3 69.13.6 74.55 3 63.6
+ demonstration' 70.7,.3/72.0,2 698,58 69.2,9 92.6p5 18.738 68.723 77.820 66.9

Auto pl‘()IIlpll.r 68.32.5/70.12.6 67.030 68374 92310 14.0141 73922 76.223 65.8
+ demonstrationT 70.03_5!’72.03_1 67.75,8 68.55_4 93.00,5 21.815_9 71.15_3 78.13_4 67.3
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