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Overview of Text Representation Development

❑ Texts need to be represented as numbers/vectors so that computer programs can 
process them

❑ How were texts represented in history?

Figure from: Liu Z., Lin Y., Sun M. (2020) Representation Learning and NLP. In: Representation Learning for Natural Language Processing. Springer.
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Symbol-Based Text Representations

❑ One-to-one correspondence between text units and representation elements
❑ E.g., “dogs” = [1, 0, 0, 0, 0]; “cats” = [0, 1, 0, 0, 0]; “cars” = [0, 0, 1, 0, 0]; “like” = [0, 0, 

0, 1, 0]; “I” = [0, 0, 0, 0, 1]
❑ Bag-of-words representation of documents: Describe a document according to which 

words are present, ignoring word ordering
❑ E.g., “I like dogs” may be represented as [1, 0, 0, 1, 1]
❑ Can further weigh words with Term Frequency (TF) and/or Inverse Document 

Frequency (IDF)
❑ Issues: Many dimensions needed (curse of dimensionality!); vectors do not reflect 

semantic similarity
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Text Embeddings

❑ Unsupervised/self-supervised learning of text representations—No annotation needed
❑ Embed one-hot vectors into lower-dimensional space—Address “curse of 

dimensionality”
❑ Word embedding captures useful properties of word semantics
❑ Word similarity: Words with similar meanings are embedded closer
❑ Word analogy: Linear relationships between words (e.g., king - queen = man -

woman)

Word AnalogyWord Similarity
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Word2Vec

❑ Many text embeddings are learned in the Euclidean space (without constraints on vectors)
❑ Word2Vec maximizes the probability of observing a word based on its local contexts
❑ As a result, semantically similar terms are more likely to have close embeddings

Co-occurred words in a local context window

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS.
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GloVe

❑ GloVe factorizes a global co-occurrence matrix derived from the entire corpus
❑ Low-dimensional representations are obtained by solving a least-squares problem to 

“recover” the co-occurrence matrix

Sparse, high dimensional Low dimensional representation

Pennington, J., Socher, R., & Manning, C.D. (2014). Glove: Global Vectors for Word Representation. EMNLP.
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Hyperbolic Embedding: Poincaré embedding 

❑ Why non-Euclidean embedding space?
❑ Data can have specific structures that Euclidean-

space models struggle to capture
❑ The hyperbolic space
❑ Continuous version of trees
❑ Naturally equipped to model hierarchical 

structures
❑ Poincaré embedding
❑ Learn hierarchical representations by pushing 

general terms to the origin of the Poincaré ball, 
and specific terms to the boundary

Nickel, M., & Kiela, D. (2017). Poincaré Embeddings for Learning Hierarchical Representations. NIPS.
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Texts in Hyperbolic Space: Poincaré GloVe

❑ GloVe in hyperbolic space
❑ Motivation: latent hierarchical structure of words exists among text
❑ Hypernym-hyponym
❑ Textual entailment

❑ Approach: use hyperbolic kernels!
❑ Effectively model generality/specificity

Tifrea, A., Bécigneul, G., & Ganea, O. (2019). Poincaré GloVe: Hyperbolic Word Embeddings. ICLR.

GloVe

Poincaré GloVe

Hyperbolic metric

Specific

General
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Directional Analysis for Text Embeddings

❑ How to use text embeddings? Mostly directional similarity (i.e., cosine similarity)

❑ Word similarity is derived using cosine similarity

❑ Better clustering performances when embeddings are normalized, and spherical 
clustering algorithms are used (Spherical K-means)

❑ Vector direction is what actually matters! 
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Issues with Previous Embedding Frameworks

❑ Although directional similarity has shown effective for various applications, previous 
embeddings (e.g., Word2Vec, GloVe) are trained in the Euclidean space

❑ A gap between training space and usage space: Trained in Euclidean space but used on 
sphere

Embedding Training in Euclidean Space Embedding Usage on the Sphere 
(Similarity, Clustering, etc.)

Post-processing 
(Normalization)
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Spherical Text Embedding: Generative Model

❑ We design a generative model on the sphere that follows how humans write articles:

❑ We first have a general idea of the paragraph/document, and then start to write 
down each word in consistent with not only the paragraph/document, but also the 
surrounding words

❑ Assume a two-step generation process: 

Document/
Paragraph (𝑑𝑑)

Center Word 
(𝑢𝑢)

Surrounding Word 
(𝑣𝑣)

Meng, Y., Huang, J., Wang, G., Zhang, C., Zhuang, H., Kaplan, L.M., & Han, J. (2019). Spherical Text Embedding. NeurIPS.



❑ Understanding the spherical generative model

16

Spherical Text Embedding: Illustration
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From Static Embedding to Contextualized Embedding

❑ Previous unsupervised word embeddings like Word2Vec and GloVe learn static
word embedding
❑ Each word has one representation regardless of specific contexts it appears in
❑ E.g., “bank” is a polysemy, but only has one representation

❑ Deep neural language models overcome this problem by learning contextualized
word semantics

“Open a bank account” “On the river bank”

18

Share representation



Pre-trained Language Models: Overview

❑ The “pre-train & finetune” paradigm has become the prominent practice in a wide
variety of text applications

❑ “Pre-training”: Train deep language models (usually Transformer models) via self-
supervised objectives on large-scale general-domain corpora

❑ All Wikipedia articles, all PubMed papers, billions of tweets, …
❑ “Fine-tuning”: Adapt the PLMs to downstream tasks using task-specific data
❑ Text Classification, question answering, entity recognition, …

❑ The power of PLMs: Encode generic linguistic features and knowledge learned through
large-scale pre-training, which can be effectively transferred to the target applications

19



Categorization of Pre-trained Language Models

❑ In this presentation, we categorize PLMs by architecture which correlates with the task
type PLMs are used for:

❑ Decoder-Only (Unidirectional) PLM: Predict the next token based on previous tokens,
usually used for language generation tasks (e.g., GPT)

❑ Encoder-Only (Bidirectional) PLM: Predict masked/corrupted tokens based on all
other (uncorrupted) tokens, usually used for language understanding/classification
tasks (e.g., BERT, XLNet, ELECTRA)

❑ Encoder-Decoder (Sequence-to-Sequence) PLM: Generate output sequences given
masked/corrupted input sequences, can be used for both language understanding
and generation tasks (e.g., T5, BART)

20
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𝑘𝑘 previous tokens as context

GPT-Style Pre-training: Introduction

22

❑ Generative Pre-training (GPT [1], GPT-2 [2], GPT-3 [3], GPT-4 [4]): 
❑ Leverage unidirectional context (usually left-to-right) for next 

token prediction (i.e., language modeling)

❑ The Transformer uses unidirectional attention masks (i.e., every 
token can only attend to previous tokens)

❑ Unidirectional PLMs can be very, very large (GPT-3 has 175 billion 
parameters!) and have very strong text generation abilities (e.g., 
generated articles make human evaluators difficult to distinguish 
from articles written by humans).

[1] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. OpenAI blog.
[2] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.
[3] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. NeurIPS.
[4] OpenAI. (2023). GPT-4 Technical Report. arXiv preprint arXiv:2303.08774.
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BERT: Masked Language Modeling

❑ Bidirectional: BERT leverages a Masked LM learning to introduce real 
bidirectionality training

❑ Masked LM: With 15% words randomly masked, the model learns bidirectional
contextual information to predict the masked words

24
Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. NAACL-HLT.



BERT: Next Sentence Prediction

❑ Next Sentence Prediction: learn to predict if the second sentence in the pair is the 
subsequent sentence in the original document

25



RoBERTa

❑ Several simple modifications that make BERT more effective:
❑ Train the model longer, with bigger batches over more data
❑ Remove the next sentence prediction objective
❑ Train on longer sequences
❑ Dynamically change the masking pattern applied to the training data

Liu, Y., Ott, M., Goyal, N., Du, J., ... & Stoyanov, V. (2019). Roberta: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.
26



ELECTRA

❑ Change masked language modeling to a more sample-efficient pre-training task, 
replaced token detection

❑ Why more efficient:
❑ Replaced token detection trains on all tokens, instead of just on those that are masked (15%)
❑ The generator trained with MLM is small (parameter size is ~1/10 of discriminator)
❑ The discriminator is trained with a binary classification task, instead of MLM (classification 

over the entire vocabulary)

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training text encoders as discriminators rather than generators. ICLR.
27



ELECTRA

❑ Better GLUE (General Language Understanding Evaluation) test performance than
previous MLM-based models under the same compute (measured by Floating Point 
Operations)

28
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T5

❑ T5: Text-to-Text Transfer Transformer
❑ Pre-training: Mask out spans of texts; generate the original spans
❑ Fine-Tuning: Convert every task into a sequence-to-sequence generation problem

Raffel, C., Shazeer, N., Roberts, A., Lee, K., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR.
30



BART architecture BART pre-training objectives

BART

❑ BART: Denoising autoencoder for pre-training sequence-to-sequence models
❑ Pre-training: Apply a series of noising schemes (e.g., masks, deletions, permutations…)

to input sequences and train the model to recover the original sequences
❑ Fine-Tuning:
❑ For classification tasks: Feed the same input into the encoder and decoder, and use the final 

decoder token for classification
❑ For generation tasks: The encoder takes the input sequence, and the decoder generates 

outputs autoregressively

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2020). BART: Denoising sequence-to-sequence pre-training for 
natural language generation, translation, and comprehension. ACL.31
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How to use PLMs?

❑ Pre-trained language models (PLMs) are usually trained on large-scale general domain 
corpora to learn generic linguistic features that can be transferred to downstream tasks

❑ Common usages of PLMs in downstream tasks
❑ Fine-tuning: Update all parameters in the PLM encoder and task-specific layers

(linear layer for standard fine-tuning or MLM layer for prompt-based fine-tuning) to
fit downstream data

❑ Prompt-based methods: Convert tasks to cloze-type token prediction problems; can
be used for either fine-tuning or zero-shot inference

❑ Parameter-efficient tuning (will not be covered due to time limit): Only update a
small portion of PLM parameters and keep other (majority) parameters unchanged

33

Li, X. L., & Liang, P. (2021). Prefix-tuning: Optimizing continuous prompts for generation. ACL.
Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., ... & Gelly, S. (2019). Parameter-efficient transfer learning for NLP. ICML.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2022). LoRA: Low-rank adaptation of large language models. ICLR.



Standard Fine-Tuning of PLMs

❑ Add task-specific layers (usually one or two linear layers) on top of the embeddings 
produced by the PLMs (sequence-level tasks use [CLS] token embeddings; token-level 
tasks use real token embeddings)

❑ Task-specific layers and the PLMs are jointly fine-tuned with task-specific training data

34



Prompt-Based Fine-Tuning of PLMs

❑ Task descriptions are created to convert 
training examples to cloze questions

❑ Highly resemble the pre-training tasks 
(MLM) so that pre-training knowledge could 
be better leveraged

❑ Better than standard fine-tuning especially 
for few-shot settings

35

Schick, T., & Schütze, H. (2021). Exploiting cloze questions for few shot text classification and natural language inference. EACL.
Le Scao, T., & Rush, A. M. (2021). How many data points is a prompt worth? NAACL.



Prompt-Based Fine-Tuning of PLMs

❑ Further improve prompt-based few-shot fine-tuning:
❑ Prompt templates and label words can be automatically generated
❑ Demonstrations can be concatenated with target sequences to provide hints

36
Gao, T., Fisch, A., & Chen, D. (2021). Making pre-trained language models better few-shot learners. ACL.



Prompt-Based Zero-Shot Inference
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❑ Even without any training, knowledge can be 
extracted from PLMs through cloze patterns

❑ PLMs can serve as knowledge bases
❑ Pros: require no schema engineering, and support 

an open set of queries
❑ Cons: retrieved answers are not guaranteed to be 

accurate
❑ Could be used for unsupervised open-domain QA 

systems

Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A. H., & Riedel, S. (2019). Language models as knowledge bases? EMNLP.



Prompt-Based Few-Shot Inference

38

❑ Large PLMs (e.g., GPT-3) have 
strong few-shot learning ability 
without any tuning on large task-
specific training sets

❑ Generate answers based on 
natural language descriptions 
and prompts



Zero-Shot Fine-Tuning of PLMs

39

❑ Prompt-based approaches have remarkable few-shot fine-tuning performance, but their zero-
shot performance is significantly worse

❑ Without any task-specific samples, it is challenging for PLMs to interpret the prompts that 
come in different formats and are unseen in the pre-training data

❑ The current mainstream of zero-shot learning is based on transfer learning
❑ Train PLMs on a large variety of different tasks with abundant annotations, and transfer to

unseen tasks
❑ Require many cross-task annotations and gigantic model sizes which are not practical for

common application scenarios
❑ Can we do fully zero-shot learning, without any task-related or cross-task annotations?
❑ When there are no training data, we can create them from scratch using PLMs!
❑ Humans can generate training data pertaining to a specific label upon given a label-

descriptive prompt (e.g., “write a negative review:”)
❑ We can leverage the strong text generation power of PLMs to do the same job



Prompt-Based Zero-Shot Training Data Generation

40

❑ SuperGen: A Supervision Generation approach
❑ Use a unidirectional PLM to generate class-conditioned texts guided by prompts
❑ Fine-tune a bidirectional PLM on the generated data for the corresponding task

Meng, Y., Huang, J., Zhang, Y., & Han, J. (2022). Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. NeurIPS.



Zero-Shot Learning Results

41

❑ Using the same prompt-based fine-tuning method, zero-shot SuperGen (fine-tuned
on generated training data) is comparable or even better than strong few-shot
methods (fine-tuned on 32 manually annotated training samples per class)
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