

Part II: Mining Topic Structures: Unsupervised and Seed-Guided Topic Discovery

EDBT 2023 Tutorial: Mining Structures from Massive Texts by Exploring the Power of Pretrained Language Models Yu Zhang, Yunyi Zhang, Jiawei Han Department of Computer Science, University of Illinois at Urbana-Champaign Mar 29, 2023

Outline

- Unsupervised Topic Discovery
 - Topic Modeling
 - Clustering-Based Topic Discovery
- Seed-Guided Topic Discovery

Topic Modeling: Introduction

- □ How to effectively & efficiently comprehend a large text corpus?
- Knowing what important topics are there is a good starting point!
- Topic discovery facilitates a wide spectrum of applications
 - Document classification/organization
 - Document retrieval/ranking
 - Text summarization

Topic Modeling: Overview

- How to discover topics automatically from the corpus?
- By modeling the corpus statistics!
 - Each document has a latent topic distribution
 - Each topic is described by a different word distribution

Latent Dirichlet Allocation (LDA): Overview

- **Each** document is represented as a mixture of various topics
 - E.g., a news document may be 40% on politics, 50% on economics, and 10% on sports
- **Each topic is represented as a probability distribution over words**
 - **E.g.**, the distribution of "politics" vs. "sports" might be like:

- Dirichlet priors are imposed to enforce sparse distributions:
 - Documents cover only a small set of topics (sparse document-topic distribution)
 - Topics use only a small set of words frequently (sparse topic-word distribution)

LDA: A Generative Model

- Formulating the statistical relationship between words, documents and latent topics as a generative process describing how documents are created:
 - For the *i*-th document, choose $\theta_i \sim \text{Dir}(\alpha)$
 - For the *k*-th topic, choose $\varphi_k \sim \text{Dir}(\beta)$
 - For the *j*-th word in the *i*-th document,
 - \Box choose topic $z_{i,j} \sim \text{Categorical}(\theta_i)$
 - \Box choose a word $w_{i,j} \sim \text{Categorical}(\varphi_{z_{i,j}})$

document's topic distribution

LDA: Inference

- Learning the parameters of LDA
- What need to be learned
 - \Box Document-topic distribution θ (for assigning topics to documents)
 - **D** Topic-word distribution φ (for topic interpretation)
 - □ Words' latent topic *z*
- How to learn the latent variables?
 (Complicated due to intractable posterior)
 - Monte Carlo simulation
 - Gibbs sampling
 - Variational inference

Outline

- Unsupervised Topic Discovery
 - Topic Modeling
 - Clustering-Based Topic Discovery
 - Directly Clustering of Text Embeddings [EMNLP'19]
 - TopClus: Latent Space Clustering of PLM Representations [WWW'22]
- Seed-Guided Topic Discovery

Clustering-Based Topic Discovery

- Topic modeling frameworks use **bag-of-words** features (i.e., only word counts in documents matter; word ordering is ignored)
- As we know, distributed text representations (text embeddings and language models) model better sequential information in text
- Can we take advantage of advanced text representations for topic discovery, as an alternative to topic modeling? This leads to Word Embedding + Clustering
- Word Embedding + Clustering: Cast "topics" as clusters of word types similar to taking the top-ranked words from each topic's distribution in topic modeling
 - How to obtain word clusters? Run clustering algorithms on word embeddings
 - Since the text embedding space captures word semantic similarity (i.e., high vector similarity implies high semantic similarity), using distance-based clustering algorithms (like K-means) will naturally group semantically similar words into the same cluster

Clustering-Based Topic Discovery: A benchmark study

- Clustering algorithms:
 - k-means (KM)
 - Gaussian Mixture Models (GMM)
- Embeddings:
 - Word2Vec
 - GloVe
 - fastText
 - Spherical text embedding
 - ELMo
 - BERT

Clustering-Based Topic Discovery: Word Frequency

- One thing to consider is that text embeddings do not explicitly encode frequency information, which is important for topic discovery (i.e., more frequent words in the corpus may be more representative)
- Two ways to incorporate frequency information
 - Weighted clustering: Frequent words weigh more when computing cluster centroids
 - Rerank words in clusters: Rerank terms by frequency in each cluster when selecting representative terms

Clustering-Based Topic Discovery: Results

Use k-means (KM)/Gaussian Mixture Models (GMM) as clustering algorithm and use Spherical text embedding/BERT as representations leads to comparable results with LDA

				Reu	ters							20 News	groups			
	<	\diamond \diamond^w \diamond_r					\diamond_r^w \diamond			\diamond^w \diamond_r		\sim_r	\diamond^w_r			
	KM	GMM	KM	GMM	KM	GMM	KM	GMM	KM	GMM	KM	GMM	KM	GMM	KM	GMM
Word2vec	-0.39	-0.47	-0.21	-0.09	0.02	0.01	0.03	0.08	-0.21	-0.10	-0.11	0.13	0.18	0.16	0.19	0.20
ELMo	-0.73	-0.55	-0.43	0.00	-0.10	-0.08	-0.02	0.06	-0.56	-0.13	-0.38	0.18	0.13	0.14	0.16	0.19
GloVe	-0.67	-0.59	-0.04	0.01	-0.27	-0.03	0.01	0.05	-0.18	-0.12	0.06	0.24	0.22	0.23	0.23	0.23
Fasttext	-0.68	-0.70	-0.46	-0.08	0.00	0.00	0.06	0.11	-0.32	-0.20	-0.18	0.21	0.24	0.23	0.25	0.24
Spherical	-0.53	-0.65	-0.07	0.09	0.01	-0.05	0.10	0.12	-0.05	-0.24	0.24	0.23	0.25	0.22	0.26	0.24
BERT	-0.43	-0.19	-0.07	0.12	0.00	-0.01	0.12	0.15	0.04	0.14	0.25	0.25	0.17	0.19	0.25	0.25
average	-0.57	-0.52	-0.21	0.01	-0.06	-0.03	0.05	0.10	-0.21	-0.11	-0.02	0.21	0.20	0.20	0.23	0.23
std. dev.	0.14	0.18	0.19	0.09	0.12	0.03	0.05	0.04	0.21	0.13	0.25	0.05	0.04	0.04	0.04	0.02

weighted clustering + reranking

Table 1: NPMI Results (higher is better) for pre-trained word embeddings and k-means (KM), and Gaussian Mixture Models (GMM). \diamond^w indicates weighted and \diamond_r indicates reranking of top words. For Reuters (left table), LDA has an NPMI score of 0.12, while GMM^w_r BERT achieves 0.15. For 20NG (right), both LDA and KM^w_r Spherical achieve a score of 0.26. All results are averaged across 5 random seeds.

Exploring Pre-Trained Language Models

- Recently, pre-trained language models (LMs) have achieved enormous success in lots of tasks
 - They employ Transformer as the backbone architecture for capturing the longrange, high-order semantic dependency in text sequences, yielding superior representations
 - They are pre-trained on large-scale text corpora like Wikipedia, they carry generic
 linguistic features that can be generalized to almost any text-related applications
- Given the strong representation power of the contextualized embeddings, it is natural to consider simply **clustering** them as an alternative to topic models
- Topics are essentially interpreted via clusters of semantically coherent and meaningful words
- □ Interestingly, such an attempt has not been reported successful yet

Naively Clustering Pre-trained Embeddings?

- Why not naively cluster pretrained embeddings?
- Visualization: The embedding spaces do not exhibit clearly separated clusters

Applying K-means with a typical K (e.g., K=100) to these spaces leads to lowquality and unstable clusters

Figure 1: Visualization using t-SNE of 10,000 randomly sampled contextualized word embeddings of BERT on (a) NYT and (b) Yelp datasets, respectively. The embedding spaces do not have clearly separated clusters.

Meng, Y., Zhang, Y., Huang, J., Zhang, Y., & Han, J. (2022). Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations. WWW.

Root of the Challenges: Too Many Clusters

- Theoretically, such embedding space structure is due to **too many clusters**
- Theorem: The MLM pre-training objective of BERT assumes that the learned contextualized embeddings are generated from a Gaussian Mixture Model (GMM) with |V| mixture components where |V| is the vocabulary size of BERT.
- Mismatch between the number of clusters in the pre-trained LM embedding space and the number of topics to be discovered
 - If a smaller K (K << |V|) is used, the resulting partition will not fit the original data well, resulting in unstable and low-quality clusters</p>
 - If a bigger K (K ≈ |V|) is used, most clusters will contain only one unique term, which is meaningless for topic discovery

The Latent Space Model

- We propose to project the original embedding space into a latent space with K clusters of words corresponding to K latent topics
- We assume that the latent space is **lower-dimensional** and **spherical**, with the following preferable properties:
 - Spherical latent space employs angular similarity between vectors to capture word semantic correlations, which works better than Euclidean metrics
 - Lower-dimensional space mitigates the "curse of dimensionality"
 - Projection from high-dimension to lower-dimension space forces the model to discard the information that is not helpful for forming topic clusters (e.g., syntactic features, "play", "plays" and "playing" should not represent different topics)

Latent Topic Space

We propose a generative model for the joint learning

```
t_k \sim \text{Uniform}(K), \ \mathbf{z}_i \sim \text{vMF}_{d'}(\mathbf{t}_k, \kappa), \ \mathbf{h}_i = g(\mathbf{z}_i).
```

- A topic *t* is sampled from a uniform distribution over the K topics
- □ A latent embedding *z* is generated from the vMF distribution associated with topic *t*

The Latent Space Model

- □ How to train the generative model?
 - Preservation of original PLM embeddings: Encourage the latent space to preserve the semantics of the original pre-trained LM induced embedding space
 - Topic reconstruction of documents: Ensure the learned latent topics are meaningful summaries of the documents
 - Clustering: Enforce separable cluster structures in the latent space for distinctive topic learning

The Clustering Loss

- □ An EM algorithm, analogous to K-means
 - The E-step estimates a new cluster assignment of each word based on the current parameters
 - □ The M-step updates the model parameters given the cluster assignments

Quantitative Results and Visualization

	Methods		NY	Г	Yelp					
_		UMass	UCI	Int.	Div.	UMass	UCI	Int.	Div	
	LDA	-3.75	-1.76	0.53	0.78	-4.71	-2.47	0.47	0.65	
	CorEx	-3.83	-0.96	0.77	-	-4.75	-1.91	0.43	-	
	ETM	-2.98	-0.98	0.67	0.30	-3.04	-0.33	0.47	0.16	
]	BERTopic	-3.78	-0.51	0.70	0.61	-6.37	-2.05	0.73	0.36	
	TopClus	-2.67	-0.45	0.93	0.99	-1.35	-0.27	0.87	0.90	

Visualization

Performance comparison

Figure 5: Visualization using t-SNE of 10,000 randomly sampled latent embeddings during the course of TopClus training. Embeddings assigned to the same cluster are denoted with the same color. The latent space gradually exhibits distinctive and balanced cluster structure.

Qualitative Results

			NYT				Yel	р		
Methods	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5	Topic 1	Topic 2	Topic 3	Topic 4	Topic 5
	(sports)	(politics)	(research)	(france)	(japan)	(positive)	(negative)	(vegetables)	(fruits)	(seafood)
	olympic	mr	said	french	japanese	amazing	loud	spinach	mango	fish
	year	bush	report	union	tokyo	really	awful	carrots	strawberry	roll
LDA	said	president	evidence	germany	year	place	sunday	greens	vanilla	salmon
	games	white	findings	workers	matsui	phenomenal	like	salad	banana	fresh
	team	house	defense	paris	said	pleasant	slow	dressing	peanut	good
	baseball	house	possibility	french	japanese	great	even	garlic	strawberry	shrimp
	championship	white	challenge	italy	tokyo	friendly	bad	tomato	caramel	beef
CorEx	playing	support	reasons	paris	index	atmosphere	mean	onions	sugar	crab
	fans	groups	give	francs	osaka	love	cold	toppings	fruit	dishes
	league	member	planned	jacques	<u>electronics</u>	favorite	literally	slices	mango	salt
	olympic	government	approach	french	japanese	nice	disappointed	avocado	strawberry	fish
	league	national	problems	students	agreement	worth	cold	greek	mango	shrimp
ETM	national	plan	experts	paris	tokyo	lunch	review	salads	sweet	lobster
	basketball	public	move	german	market	recommend	experience	spinach	soft	crab
	athletes	support	give	american	european	friendly	bad	tomatoes	flavors	chips
	swimming	bush	researchers	french	japanese	awesome	horrible	tomatoes	strawberry	lobster
	freestyle	democrats	scientists	paris	tokyo	atmosphere	quality	avocado	mango	crab
BERTopic	ророч	white	cases	lyon	ufj	friendly	disgusting	soups	cup	shrimp
	gold	bushs	genetic	minister	company	night	disappointing	kale	lemon	oysters
	olympic	house	study	billion	yen	good	place	cauliflower	banana	amazing
	athletes	government	hypothesis	french	japanese	good	tough	potatoes	strawberry	fish
	medalist	ministry	methodology	seine	tokyo	best	bad	onions	lemon	octopus
TopClus	olympics	bureaucracy	possibility	toulouse	osaka	friendly	painful	tomatoes	apples	shrimp
	tournaments	politicians	criteria	marseille	hokkaido	cozy	frustrating	cabbage	grape	lobster
	quarterfinal	electoral	assumptions	paris	yokohama	casual	brutal	mushrooms	peach	crab

Outline

- Unsupervised Topic Discovery
- Seed-Guided Topic Discovery
 - CatE: Discriminative Topic Mining via Category-Name Guided Text Embedding [WWW'20]
 - JoSH: Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]
 - SeedTopicMine: Integrating Multiple Types of Contexts [WSDM'23]

Limitations of Unsupervised Topic Discovery

- Cannot incorporate user guidance: Topic models tend to retrieve the most general and prominent topics from a text collection
 - may not be of a user's particular interest
 - provide a skewed and biased summarization of the corpus
- Cannot enforce distinctiveness among retrieved topics: Topic models do not impose discriminative constraints
 - □ E.g., three retrieved topics from the New York Times annotated corpus via LDA

Table 1: LDA retrieved topics on NYT dataset. The meanings of the retrieved topics have overlap with each other.

Topic 1	Topic 2	Topic 3	<
canada, united states	sports, united states	united states, iraq	
canadian, economy	olympic, games	government, president	

Difficult to clearly define the meaning of the three topics due to an overlap of their semantics (e.g., the term "united states" appears in all 3 topics)

Seed-Guided, Discriminative Topic Mining

- Discriminative Topic Mining: Given a text corpus and a set of category names, retrieve a set of terms that exclusively belong to each category
 - □ E.g., given c_1 : "The United States", c_2 : "France", c_3 : "Canada"
 - \Box Yes to "Ontario" under c_3 : (a province in Canada and exclusively belongs to Canada)
 - No to "North America" under c₃: (a continent and does not belong to any countries (reversed belonging relationship))
 - No to "English" under c₃: (English is also the national language of the United States (not discriminative))
- Difference from topic modeling
 - requires a set of user provided category names and only focuses on retrieving terms belonging to the given categories
 - imposes strong discriminative requirements that each retrieved term under the corresponding category must belong to and only belong to that category semantically

Outline

- Unsupervised Topic Discovery
- Seed-Guided Topic Discovery

- CatE: Discriminative Topic Mining via Category-Name Guided Text Embedding [WWW'20]
- JoSH: Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]
- SeedTopicMine: Integrating Multiple Types of Contexts [WSDM'23]

Discriminative Topic Mining via CatE

- □ Word embeddings capture word semantic correlations via the distributional hypothesis
 - captures local context similarity
 - not exploit document-level statistics (global context)
 - not model topics
- □ CatE: Category Name-guided Embedding: leverages *category names* to learn word embeddings with discriminative power over the specific set of categories
- CatE: Inputs
 - Category names + Corpus
- □ CatE: Outputs (see figure)
 - The same set of celebrities are embedded differently given different sets of category names

Meng, Y., Huang, J., Wang, G., Wang, Z., Zhang, C., Zhang, Y., & Han, J. (2020). Discriminative topic mining via category-name guided text embedding. WWW.

CatE Embedding: Text Generation Modeling

- Modeling text generation under user guidance
- □ A three-step process:
 - **1**. A document d is generated conditioned on one of the n categories **1**. Topic assignment
 - 2. Each word w_i is generated conditioned on the semantics of the document d
 - 3. Surrounding words w_{i+j} in the local context window of w_i are generated conditioned on the semantics of the center word w_i
- 3. Local context
- Compute the likelihood of corpus generation conditioned on usergiven categories

CatE Embedding: Objective

Objective: negative log-likelihood

$$P(\mathcal{D} \mid C) = \prod_{d \in \mathcal{D}} p(d \mid c_d) \prod_{w_i \in d} p(w_i \mid d) \prod_{w_{i+j} \in d} p(w_{i+j} \mid w_i)$$

1. Topic assignment 2. Global context 3. Local context

$$p(d \mid c_d) \propto p(c_d \mid d)p(d) \propto p(c_d \mid d) \propto \prod_{w \in d} p(c_d \mid w), \text{ Decompose into word-topic distribution}$$

Introducing specificity

Definition 2 (Word Distributional Specificity). We assume there is a scalar $\kappa_w \ge 0$ correlated with each word w indicating how specific the word meaning is. The bigger κ_w is, the more specific meaning word w has, and the less varying contexts w appears in.

E.g., "seafood" has a higher word distributional specificity than "food", because seafood is a specific type of food

Category Representative Word Retrieval

Ranking Measure for Selecting Class Representative Words:

 \Box We find a representative word of category c_i and add it to the set S by

Quantitative Results

Two datasets:

- New York Times annotated corpus (NYT)
 - Two categories: topic and location
- Recently released Yelp Dataset Challenge (Yelp)

Two categories: food type and sentiment

Mathada	NYT-I	Location	NYT	NYT-Topic		-Food	Yelp-Sentiment	
Methods	TC	MACC	TC	MACC	TC	MACC	TC	MACC
LDA	0.007	0.489	0.027	0.744	-0.033	0.213	-0.197	0.350
Seeded LDA	0.024	0.168	0.031	0.456	0.016	0.188	0.049	0.223
TWE	0.002	0.171	-0.011	0.289	0.004	0.688	-0.077	0.748
Anchored CorEx	0.029	0.190	0.035	0.533	0.025	0.313	0.067	0.250
Labeled ETM	0.032	0.493	0.025	0.889	0.012	0.775	0.026	0.852
CatE	0.049	0.972	0.048	0.967	0.034	0.913	0.086	1.000

Dataset stat: # of docs by category name

Qualitative Results

Mathada	NYT-L	ocation	NYT	-Topic	Ye	lp-Food	Yelp-Se	ntiment
Methods	britain	canada	education	politics	burger	desserts	good	bad
	company (×)	percent (×)	school	campaign	fatburger	ice cream	great	valet (×)
	companies (×)	economy (×)	students	clinton	dos (×)	chocolate	place (×)	peter (×)
LDA	british	canadian	city (×)	mayor	liar (×)	gelato	love	aid (×)
	shares (×)	united states (×)	state (×)	election	cheeseburgers	tea (×)	friendly	relief (×)
	great britain	trade (×)	schools	political	bearing (×)	sweet	breakfast	rowdy
	british	city (×)	state (×)	republican	like (×)	great (×)	place (×)	service (×)
Seeded	industry (×)	building (×)	school	political	fries	like (×)	great	did (×)
LDA	deal (×)	street (×)	students	senator	just (×)	ice cream	service (×)	order (×)
LDA	billion (×)	buildings (×)	city (×)	president	great (×)	delicious (×)	just (×)	time (×)
	business (×)	york (×)	board (×)	democrats	time (×)	just (×)	ordered (×)	ordered (\times)
	germany (×)	toronto	arts (×)	religion	burgers	chocolate	tasty	subpar
	spain (×)	osaka (×)	fourth graders	race	fries	complimentary (×)	decent	positive (×)
TWE	manufacturing (×)	booming (×)	musicians (×)	attraction (×)	hamburger	green tea (×)	darned (×)	awful
	south korea (×)	asia (×)	advisors	era (×)	cheeseburger	sundae	great	crappy
	markets (×)	alberta	regents	tale (×)	patty	whipped cream	suffered (×)	honest (×)
	moscow (×)	sports (×)	republican (×)	military (×)	order (×)	make (×)	selection (×)	did (×)
Anchored	british	games (×)	senator (×)	war (×)	know (×)	chocolate	prices (×)	just (×)
CorFr	london	players (×)	democratic (×)	troops (×)	called (×)	people (×)	great	came (×)
COLEX	german (×)	canadian	school	baghdad (×)	fries	right (×)	reasonable	asked (×)
	russian (×)	coach	schools	iraq (×)	going (×)	want (×)	mac (×)	table (×)
	france (×)	canadian	higher education	political	hamburger	pana	decent	horrible
Labeled	germany (×)	british columbia	educational	expediency (×)	cheeseburger	gelato	great	terrible
ETM	canada (×)	britain (×)	school	perceptions (×)	burgers	tiramisu	tasty	good (×)
E I IVI	british	quebec	schools	foreign affairs	patty	cheesecake	bad (×)	awful
	europe (×)	north america (×)	regents	ideology	steak (×)	ice cream	delicious	appallingly
	england	ontario	educational	political	burgers	dessert	delicious	sickening
	london	toronto	schools	international politics	cheeseburger	pastries	mindful	nasty
CatE	britons	quebec	higher education	liberalism	hamburger	cheesecakes	excellent	dreadful
	scottish	montreal	secondary education	political philosophy	burger king	scones	wonderful	freaks
	great britain	ottawa	teachers	geopolitics	smash burger	ice cream	faithful	cheapskates

Case Study: Effect of Distributional Specificity

□ Coarse-to-fine topic presentation on NYT-Topic

Range of κ	Science ($\kappa_c = 0.539$)	Technology ($\kappa_c = 0.566$)	Health ($\kappa_c = 0.527$)
$\kappa_c < \kappa < 1.25\kappa_c$	scientist, academic, research, laboratory	machine, equipment, devices, engineering	medical, hospitals, patients, treatment
1.25r < r < 1.5r	physics, sociology,	information technology, computing,	mental hygiene, infectious diseases,
$1.23\kappa_{C} < \kappa < 1.3\kappa_{C}$	biology, astronomy	telecommunication, biotechnology	hospitalizations, immunizations
15r < r < 175r	microbiology, anthropology,	wireless technology, nanotechnology,	dental care, chronic illnesses,
$1.5\kappa_{C} < \kappa < 1.75\kappa_{C}$	physiology, cosmology	semiconductor industry, microelectronics	cardiovascular disease, diabetes
	national science foundation,	integrated circuits,	juvenile diabetes,
$\kappa > 1.75\kappa$	george washington university,	assemblers,	high blood pressure,
$\kappa > 1.75\kappa_c$	hong kong university,	circuit board,	family violence,
	american academy	advanced micro devices	kidney failure

The table lists the most similar words/phrases with each category (measured by embedding cosine similarity) from different ranges of distributional specificity

 \Box When κ is smaller, the retrieved words have wider semantic coverage

In our model design, if not imposing constraints on the κ, the retrieved words might be too general and do not belong to the category

Outline

- Unsupervised Topic Discovery
- Seed-Guided Topic Discovery
 - CatE: Discriminative Topic Mining via Category-Name Guided Text Embedding [WWW'20]
 - JoSH: Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]
 - SeedTopicMine: Integrating Multiple Types of Contexts [WSDM'23]

Motivation: Hierarchical Topic Mining

- Mining a set of meaningful topics organized into a hierarchy is intuitively appealing and has broad applications
 - Coarse-to-fine topic understanding
 - Hierarchical corpus summarization
 - Hierarchical text classification

• ...

Hierarchical topic models discover topic structures from text corpora via modeling the text generative process with a latent hierarchy

Meng, Y., Zhang, Y., Huang, J., Zhang, Y., Zhang, C., & Han, J. (2020). Hierarchical topic mining via joint spherical tree and text embedding. KDD.

JoSH Embedding

Difference from hyperbolic models (e.g., Poincare, Lorentz)

- Hyperbolic embeddings preserve absolute tree distance (similar embedding distance => similar tree distance)
- We do not aim to preserve the absolute tree distance, but rather use it as a relative measure

Although $d_{\text{tree}}(\text{sports, arts}) = d_{\text{tree}}(\text{baseball, soccer})$, "baseball" and "soccer" should be embedded closer than "sports" and "arts" to reflect semantic similarity.

Use tree distance in a relative manner: Since d_{tree} (sports, baseball) $< d_{tree}$ (baseball, soccer), "baseball" and "sports" should be embedded closer than "baseball" and "soccer".

JoSH Text Embedding

□ Modeling Text Generation Conditioned on the Category Tree (Similar to CatE)

- □ A three-step process:
 - 1. A document d_i is generated conditioned on one of the n categories

```
1. Topic assignment
```

$$p(d_i \mid c_i) = \text{vMF}(\boldsymbol{d}_i; \boldsymbol{c}_i, \kappa_{c_i}) = n_p(\kappa_{c_i}) \exp\left(\kappa_{c_i} \cdot \cos(\boldsymbol{d}_i, \boldsymbol{c}_i)\right)$$

2. Each word w_j is generated conditioned on the semantics of the document d_i 2. Global context

$$p(w_j \mid d_i) \propto \exp(\cos(\boldsymbol{u}_{w_j}, \boldsymbol{d}_i))$$

3. Surrounding words w_{j+k} in the local context window of w_i are generated conditioned on the semantics of the center word w_i

 $p(w_{j+k} \mid w_j) \propto \exp(\cos(\boldsymbol{v}_{w_{j+k}}, \boldsymbol{u}_{w_j}))$

3. Local context

JoSH Tree Embedding

Intra-Category Coherence: Representative terms of each category should be highly semantically relevant to each other, reflected by high directional similarity in the spherical space

$$\mathcal{L}_{\text{intra}} = \sum_{c_i \in \mathcal{T}} \sum_{w_j \in C_i} \min(0, \boldsymbol{u}_{w_j}^{\top} \boldsymbol{c}_i - m_{\text{intra}}),$$

Inter-Category Distinctiveness: Encourage distinctiveness across different categories to avoid semantic overlaps so that the retrieved terms provide a clear and distinctive description

$$\mathcal{L}_{\text{inter}} = \sum_{c_i \in \mathcal{T}} \sum_{c_j \in \mathcal{T} \setminus \{c_i\}} \min(0, 1 - c_i^{\top} c_j - m_{\text{inter}}).$$

(a) Intra- & Inter-Category Configuration.

JoSH Tree Embedding

□ **Recursive Local Tree Embedding:** Recursively embed local structures of the category tree onto the sphere Local tree *T_r* rooted at node

Preserving Relative Tree Distance within Local Trees: A category should be closer to its parent category than to its sibling categories in the embedding space

$$\mathcal{L}_{\text{inter}} = \sum_{c_i \in \mathcal{T}_r} \sum_{c_j \in \mathcal{T}_r \setminus \{c_r, c_i\}} \min(0, c_i^\top c_r - c_i^\top c_j - m_{\text{inter}})$$

Experiments: Qualitative Results on NYT

Figure 3: Hierarchical Topic Mining results on NYT.

Experiments: Qualitative Results on ArXiv and Quantitative Results

		computer science							
		computer			Madala	N	ΥT	ar	Kiv
		artificial intelligence			Models	TC	MACC	TC	MACC
		data mining			hLDA	-0.0070	0.1636	-0.0124	0.1471
		t			hPAM	0.0074	0.3091	0.0037	0.1824
natural language processing	pattern recognition	networking	programming languages	game theory	JoSE	0.0140	0.6818	0.0051	0.7412
machine translation	image processing	cloud computing	libraries	decision problems	Poincaré GloVe	0.0092	0.6182	-0.0050	0.5588
parsing	computer vision	p2p	python	influence diagrams	Anchored CorEx	0.0117	0.3909	0.0060	0.4941
question answering	image segmentation	iot	java	two-player	CatE	0.0149	0.9000	0.0066	0.8176
summarization	vision tasks	sdn virtualization	c++ compiler	nash equilibria	JoSH	0.0166	0.9091	0.0074	0.8324

(c) "Computer Science" subtree.

Outline

- Unsupervised Topic Discovery
- Seed-Guided Topic Discovery
 - CatE: Discriminative Topic Mining via Category-Name Guided Text Embedding [WWW'20]
 - JoSH: Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]
 - SeedTopicMine: Integrating Multiple Types of Contexts [WSDM'23]

Commonly Used Context Information

Context Type I - Skip-Gram Embeddings

- Previous slides have shown that clustering skip-gram embeddings underperforms clustering output representations of contextualized language models such as BERT in unsupervised topic modeling.
- Context Type II Pre-trained Language Model Representations
 - Previous slides have shown that BERT representations suffer from the curse of dimensionality and may not form clearly separated clusters
 - Thompson and Mimno [1] find that GPT-2 representations work well only if the outputs of certain layers are taken, and RoBERTa-induced topics are consistently of poor quality.

[1] Thompson, L., and Mimno, D. (2020). Topic modeling with contextualized word representation clusters. arXiv.

Commonly Used Context Information

Context Type III - Topic-Indicative Documents

Supervised topic models [1] propose to leverage document-level training data. However, such information relies on massive human annotation, which is not available under the seed-guided setting.

A document may be too broad to be viewed as a context unit because each document can be relevant to multiple topics simultaneously.

Each type of context signals has its specific advantages and disadvantages.

- A topic discovery method purely relying on one type of context information may not be robust across different datasets or seed dimensions.
- Meanwhile, the three types of contexts strongly complement each other.

SeedTopicMine: Overview

Figure 1: Overview of the SEEDTOPICMINE framework.

Zhang, Y., Zhang, Y., Michalski, M., Jiang, Y., Meng, Y., & Han, J. (2023). Effective Seed-Guided Topic Discovery by Integrating Multiple Types of Contexts. WSDM.

SeedTopicMine: Topic-Indicative Sentence Retrieval

- The sentences containing many topic-indicative terms from one category and do not contain any topic-indicative term from other categories should be topicindicative sentences. We call such sentences "anchor" sentences.
- The "neighbor" sentences of topic-indicative "anchor" sentences should be included in topic-indicative sentences as well if they do not contain topicindicative terms from other categories.

Quantitative Results

Table 2: NPMI, P@20, and NDCG@20 scores of compared algorithms. NPMI measures topic coherence; P@20 and NDCG@20 measure term accuracy.

Method	NYT-Topic			NYT-Location			Yelp-Food			Yelp-Sentiment		
Method	NPMI	P@20	NDCG@20	NPMI	P@20	NDCG@20	NPMI	P@20	NDCG@20	NPMI	P@20	NDCG@20
SeededLDA [15]	0.0841	0.2389	0.2979	0.0814	0.1050	0.1873	0.0504	0.1200	0.2132	0.0499	0.1700	0.2410
Anchored CorEx [10]	0.1325	0.2922	0.3627	0.1283	0.2040	0.3003	0.1204	0.3725	0.4531	0.0627	0.1200	0.1997
KeyETM [13]	0.1254	0.1589	0.2342	0.1146	0.0700	0.1676	0.0578	0.1788	0.2940	0.0327	0.4250	0.4994
CatE [27]	0.1941	0.8067	0.8306	0.2165	0.7480	0.7840	0.2058	0.6812	0.7312	0.1509	0.7150	0.7713
SeedTopicMine	0.1947	0.9456	0.9573	0.2176	0.8360	0.8709	0.2018	0.7912	0.8379	0.0922	0.9750	0.9811

Mathad	Yel	p -Food	Yelp-Sentiment		
Wethou	P@20	NDCG@20	P@20	NDCG@20	
SeedTopicMine	0.7912	0.8379	0.9750	0.9811	
SeedTopicMine-NoEmb	0.4488	0.5335	0.9550	0.9646	
SeedTopicMine-NoPLM	0.6962	0.7602	0.7550	0.8029	
SeedTopicMine-NoSntn	0.7488	0.8029	0.9500	0.9631	

- □ Three types of contexts all have positive contribution.
- Even for the same dataset (i.e., Yelp), the contribution of a certain type of context information varies significantly with the input seeds. Therefore, it becomes necessary to integrate them together to make the framework more robust.

Qualitative Results

 $Table \ 3: Top-5 \ terms \ retrieved \ by \ different \ algorithms. \times: At \ least \ 3 \ of \ the \ 5 \ annotators \ judge \ the \ term \ as \ irrelevant \ to \ the \ seed.$

Mathad	N	YT-Topic	NYT-	Location	Yelp-F	ood	Yelp-Se	ntiment
Method	health	business	france	canada	sushi	desserts	good	bad
SeededLDA	said (×) dr (×) new (×) would (×) hospital	said (×) percent (×) company year (×) billion (×)	said (×) new (×) state (×) would (×) dr (×)	new (×) city (×) said (×) building (×) mr (×)	roll good (×) place (×) food (×) rolls	food (×) us (×) order (×) service (×) time (×)	place (×) food (×) great like (×) service (×)	food (×) service (×) us (×) order (×) time (×)
Anchored CorEx	case (×) court (×) patients cases (×) lawyer (×)	employees advertising media (×) businessmen commerce	school (×) students (×) children (×) education (×) schools (×)	market (×) percent (×) companies (×) billion (×) investors (×)	rolls roll sashimi fish (×) tempura	also (×) really (×) well (×) good (×) try (×)	definitely (×) prices (×) strip (×) selection (×) value (×)	one (×) would (×) like (×) could (×) us (×)
KeyETM	team (×) game (×) players (×) games (×) play (×)	percent (×) japan (×) year (×) japanese (×) economy	city (×) state (×) york (×) school (×) program (×)	people (×) year (×) china (×) years (×) time (×)	sashimi rolls fish (×) japanese	food (\times) great (\times) place (\times) good (\times) service (\times)	great delicious amazing excellent tasty	food (×) place (×) service (×) time (×) restaurant (×)
CatE	public health health care medical hospitals doctors	diversifying (×) clients (×) corporate investment banking executives	french corsica spain (×) belgium (×) de (×)	alberta british columbia ontario manitoba canadian	freshest fish (×) sashimi nigiri ayce sushi rolls	delicacies (×) sundaes savoury (×) pastries custards	tasty delicious yummy chilaquiles (×) also (×)	unforgivable frustrating horrible irritating rude
SeedTopicMine	medical hospitals hospital public health patients	companies businesses corporations firms corporate	french paris philippe (×) french state frenchman	canadian quebec montreal toronto ottawa	maki rolls sashimi ayce sushi revolving sushi nigiri	cheesecakes croissants pastries breads (×) cheesecake	great excellent fantastic delicious amazing	terrible horrible awful lousy shitty

References

- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research.
- Meng, Y., Huang, J., Wang, G., Wang, Z., Zhang, C., Zhang, Y., & Han, J. (2020). Discriminative topic mining via category-name guided text embedding. WWW.
- Meng, Y., Zhang, Y., Huang, J., Zhang, Y., Zhang, C., & Han, J. (2020). Hierarchical topic mining via joint spherical tree and text embedding. KDD.
- Meng, Y., Zhang, Y., Huang, J., Zhang, Y., & Han, J. (2022). Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations. WWW.
- Sia, S., Dalmia, A., & Mielke, S. J. (2020). Tired of Topic Models? Clusters of Pretrained Word Embeddings Make for Fast and Good Topics too! EMNLP.
- Zhang, Y., Zhang, Y., Michalski, M., Jiang, Y., Meng, Y., & Han, J. (2023). Effective Seed-Guided Topic Discovery by Integrating Multiple Types of Contexts. WSDM.