

Part IV: Mining Entity Structures: Taxonomy and Knowledge Base Construction

EDBT 2023 Tutorial: Mining Structures from Massive Texts by Exploring the Power of Pretrained Language Models Yu Zhang, Yunyi Zhang, Jiawei Han Department of Computer Science, University of Illinois at Urbana-Champaign Mar 29, 2023

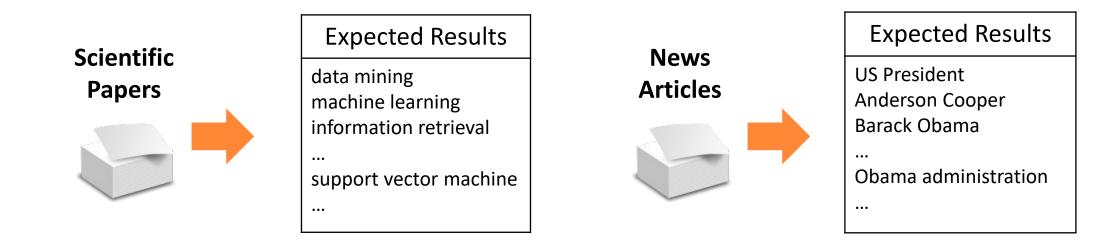
Outline

Phrase Mining

- UCPhrase: Unsupervised Context-aware Quality Phrase Tagging [KDD'21]
- Named Entity Recognition
- Taxonomy Construction
- Relation Extraction and Knowledge Graph Construction

Why Phrase Mining?

Identifying and understanding quality phrases from context is a fundamental task in text mining.



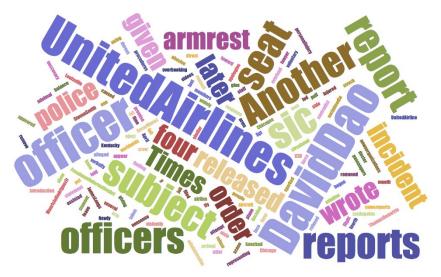
Quality phrases refer to informative multi-word sequences that "appear consecutively in the text, forming a complete semantic unit in certain contexts or the given document" [1].

[1] Geoffrey Finch. 2016. Linguistic terms and concepts. Macmillan International Higher Education

Why Phrase Mining?

w/o phrase mining

- What's "United"?
- Who's "Dao"?
- Applications in NLP, IR, Text Mining
 - Text Classification
 - Indexing in search engine



w/ phrase mining

- United Airline!
- David Dao!
- Keyphrases for topic modelingText Summarization

Previous Phrase Mining/Chunking Models

- □ Statistics-based models (*TopMine, SegPhrase, AutoPhrase*)
 - only work for frequent phrases, ignore valuable infrequent / emerging phrases
- Tagging-based models (Spacy, StanfordNLP)
- do not have requirements for frequency
- require expensive and unscalable sentence-level annotations for model training

Framework of UCPhrase

Silver Label Generation + Attention Map-based Span Prediction

Core Phrases for Silver Labels

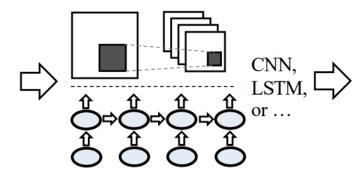
unsupervised, per-document, could have noise (e.g., "cities including")

The [heat island effect] is from ... The term heat island is also used ... [heat island effect] is found to be ...

... like other [cities including] [New York]... happens in [cities including] ... about [New York]. Sentence Attention Maps no fine-tuning, one-pass only, captures the sentence structure like other cities New

Pre-trained Transformer LM

Train a Lightweight Classifier core phrases vs. random negatives



Final Tagged Quality Phrases

both frequent & uncommon phrases could correct noise from silver labels

The [heat island effect] is from ... The term [heat island] is also used ... [heat island effect] is found to be ...

... like other cities including [New York] ... happens in cities including ... about [New York].

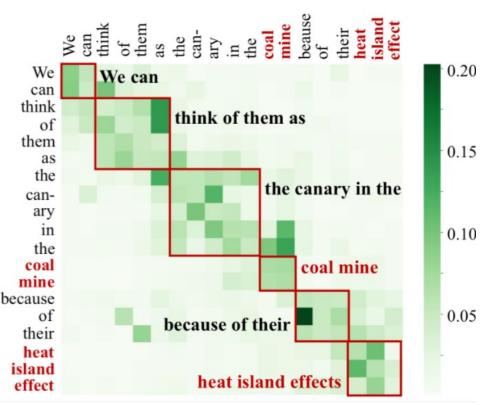
Silver Label Generation

How do human readers accumulate new phrases?

- even without any prior knowledge we can recognize these consistently used patterns from a document
- e.g., task name, method name, dataset name, concepts in a publication
- e.g., human name, organization, locations in a news article
- Mining core phrases as silver labels
 - independently mine **max word sequential patterns** within each document
 - with each document as context
 - preserve contextual completeness ("biomedical data mining" vs. "data mining")
 - avoid potential noises from propagating to the entire corpus

Attention Map as Surface-Agnostic Feature

- Good features for phrase recognition should be
 - agnostic to word surface names (so the model cannot rely on rigid memorization)
 - focusing on sentence structure rather than phrase names
- Extract knowledge directly from a pre-trained language model
 - the attention map of a sentence vividly visualizes its inner structure
 - high quality phrases should have distinct attention
 patterns from ordinary spans
- Phrase Tagging as Image Classification
 - train a lightweight 2-layer CNN model for binary classification: is a phrase or not



Quantitative Evaluation

Table 2: Evaluation results (%) of three tasks for all compared methods on datasets on two domains.

	Method Name	Task I: Phrase Ranking				Task II: KP Extract.			Task III: Phrase Tagging						
Method Type		KP20k		KPTimes		KP20K		KPTimes		KP20k		κ.	KPTimes		es
		P@5K	P@50K	P@5K	Р@50К	Rec.	F _{1@10}	Rec.	F _{1@10}	Prec.	Rec.	F_1	Prec.	Rec.	F_1
	PKE [3]	_	_	_	_	57.1	12.6	61.9	4.4	54.1	63.9	58.6	56.1	62.2	59.0
Pre-trained	Spacy [16]	_	_	_	_	59.5	15.3	60.8	8.6	56.3	68.7	61.9	61.9	62.9	62.4
	StanfordNLP [26]	-	-	-	-	51.7	13.9	60.8	8.7	48.3	60.7	61.9 61.9 62.9 53.8 56.9 60.3	58.6		
Distantly Companying d	AutoPhrase [33]	97.5	96.0	96.5	95.5	62.9	18.2	77.8	10.3	55.2	45.2	49.7	44.2	47.7	45.9
Distantly Supervised	Wiki+RoBERTa	100.0	98.5	99.0	96.5	73 .0	19.2	64.5	9.4	58.1	64.2	61.0	60.9	65.6	63.2
Unamouricad	TopMine [8]	81.5	78.0	85.5	71.0	53.3	15.0	63.4	8.5	39.8	41.4	40.6	32.0	36.3	34.0
Unsupervised	UCPhrase (ours)	96.5	96.5	96.5	95.5	72.9	19.7	83.4	10.9	69.9	78.3	73.9	69.1	78.9	73.5

Outline

- Phrase Mining
- Named Entity Recognition (NER)

- Few-shot NER and Entity Typing
- Few-Shot Fine-Grained Entity Typing with Automatic Label Interpretation and Instance Generation [KDD' 2022]
- **Distantly-supervised NER**
- **Taxonomy Construction**
- Relation Extraction and Knowledge Graph Construction

Named Entity Recognition (NER)

- □ A **named entity** typically refers to a sequence of words that correspond to a specific entity in the real world (i.e., an entity with a *name*) (e.g., *"Bill Clinton"*)
- Named-entity recognition (NER) is a subtask of information extraction (IE) that seeks to locate and classify named entities in text into pre-defined categories
 - Given a sentence, NER is to first *segment which words are part of entities*, and then *classify each entity by type* (person, organization, location, and so on)
 - Example
 - □ Input: Jim bought 300 shares of Acme Corp. in 2006
 - □ Output: [Jim]_{Person} bought 300 shares of [Acme Corp.]_{Organization} in [2006]_{Time}
- Most NER methods focus on three types of entities: *person, location,* and *organization. Some also include dates, times, monetary values,* and *percentages* Also, *biological entities* (in bio-domain), or *product names* (for online advertising)

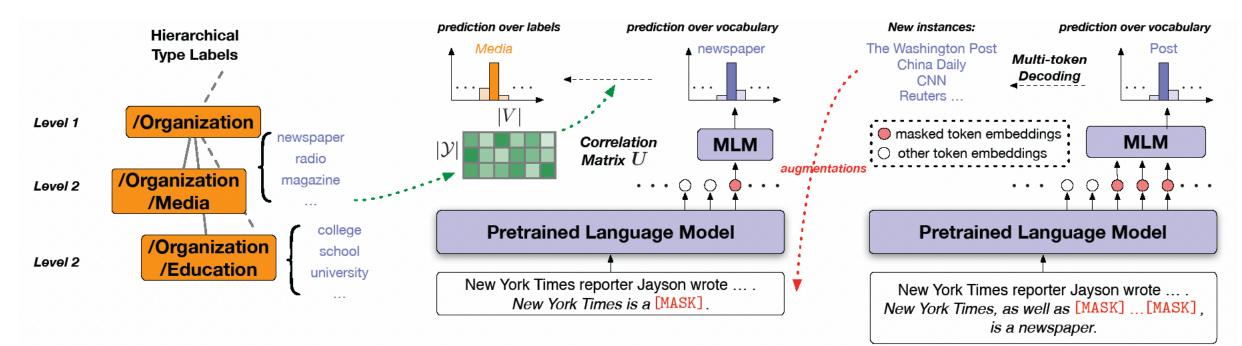
Motivation

- Deep neural models have achieved enormous success for NER
- However, a common bottleneck of training deep learning models is the acquisition of abundant high-quality human annotations
- Few-shot NER learns to transfer to new domains/categories with only a few training examples.

Limitations of current pipeline

- Current approaches have not fully utilized the power of PLMs
- **representation** models that predict entity types based on entity instance representations
- the generation power of PLMs acquired through extensive generaldomain pretraining can be exploited to generate new entity instances
 - model can be trained with more instances for better generalization

Overall Framework of ALIGNIE (Automatic Label Interpretation and Generating New Instance for Entity typing)



Entity Type Interpreter

(Left): With a given type label hierarchy, an entity type interpretation module relates all the words in the vocabulary with the label hierarchy by a correlation 14 matrix.

(Middle): An entity typing classifier maps the word probability at the [MASK] position to type probability using the correlation matrix.

Entity Type Classifier

Contextualized Instance Generator

(Right): A type-based contextualized instance generator uses an entity mention and its predicted type to construct a template for new instance generation to augment the training set.

PLM-based Instance Generator

E.g., a *newspaper* entity "New York Times"

more newspaper names

Generation Template :

[Context]. New York Times, as well as [MASK] [MASK] [MASK], is a *newspaper*. Entity Mention # ranges from Predicted by

ranges from1 to the length oforiginal entity mention

Predicted by Entity Type Classifier

Multi-Token Instance Generation

We randomly choose one [MASK] token at each step, and sample from its output token probability to fill in a word.

New York Times, as well as the $_1$ [MASK] [MASK] is a newspaper. E.g. New York Times, as well as the $_1$ Washington $_2$ [MASK] is a newspaper. New York Times, as well as the $_1$ Washington $_2$ Post $_3$ is a newspaper. The next blank to be filled in is randomly selected, therefore the order is not always from left to right.

Score(
$$\widetilde{\boldsymbol{m}}$$
) = $\sum_{i=1}^{|\widetilde{\boldsymbol{m}}|} \log(s_i)$

The conditional probability at each step

Generated New instances based on predicted types of example entities

Multi-token instances

Generation from multi-token entities									
Context & entity mention	MLM predicted type	Generated new instances							
The album also included the song "Vivir Lo Nuestro," a duet with Marc Anthony .	singer	Beyonce, Jennifer Lopez, Rihanna, Taylor Swift, Lady Gaga, Michael Jackson,							
The film was released on August 9, 1925, by Universal Pictures.	company	Warner Brothers, Paramount Pictures , Columbia Pictures, Lucasfilm, Hollywood Pictures,							
Everland hosted 7.5 million guests in 2006, ranking it fourth in Asia behind the two Tokyo Disney Resort parks and Universal Studios Japan, while Lotte World attracted 5.5 million guests to land in fifth place.	park	Lotte World, Universal Studios Japan, Shanghai Disney World , Orlando Universal Studios,							
The site of Drake's landing as officially recognised by the U.S. Department of the Interior and other agencies is Drake's Cove.	government agency	the Department of Homeland Security, the Bureau of Land Management, the Federal Bureau of Investigation, the United States Forest Service, the National Institutes of Health,							
Pikmin also make a cameo during the process of transferring downloadable content from a Nintendo DSi to a 3DS, with various types of Pikmin carrying the data over.	handheld	3DS, 2DS, Wii U, Nintendo Switch, the PSP, PlayStation Vita,							

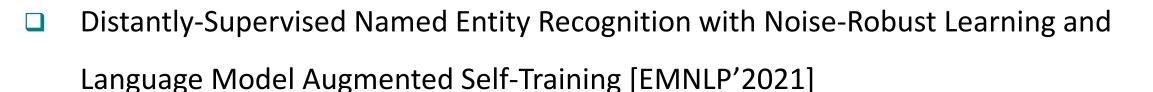
Main Results

Madla J	OntoNotes				BBN			Few-NERD			
Method	(Acc.)	(Micro-F1)	(Macro-F1)	(Acc.)	(Micro-F1)	(Macro-F1)	(Acc.)	(Micro-F1)	(Macro-F1)		
5-Shot Setting											
Fine-tuning	28.60	50.70	51.60	51.03	60.03	58.22	36.09	48.56	48.56		
Prompt-based MLM	32.62	60.97	61.82	67.00	75.23	73.55	44.69	59.24	59.24		
PLET	48.57	70.63	75.43	71.23	79.22	78.93	56.94	68.81	68.81		
ALIGNIE (- hierarchical reg.)	52.74	77.55	79.72	72.15	80.35	80.40	59.01	70.91	70.91		
ALIGNIE (- new instances)	51.10	72.91	76.88	73.50	81.62	81.31	57.41	69.47	69.47		
ALIGNIE	53.37	77.21	80.68	75.44	82.20	82.30	59.72	71.90	71.90		
Fully Supervised Setting											
Fine-tuning	56.70	75.21	78.86	78.06	82.39	82.60	79.75	85.74	85.74		
Prompt-based MLM	55.18	74.57	77.47	77.10	81.77	82.05	77.38	85.22	85.22		

- Prompt-based results have higher performance than vanilla fine-tuning in few-shot settings. In fully supervised settings, however, fine-tuning performs a little better than prompt-based MLM.
- ALIGNIE can even outperform fully supervised setting on OntoNotes and BBN, but cannot on Few-NERD. This is because the training set of OntoNotes and BBN are automatically inferred from external knowledge bases, and can contain much noise.

Outline

- Phrase Mining
- Named Entity Recognition (NER)
 - Few-shot NER
 - Distantly-supervised NER



- Taxonomy Construction
- Relation Extraction and Knowledge Graph Construction

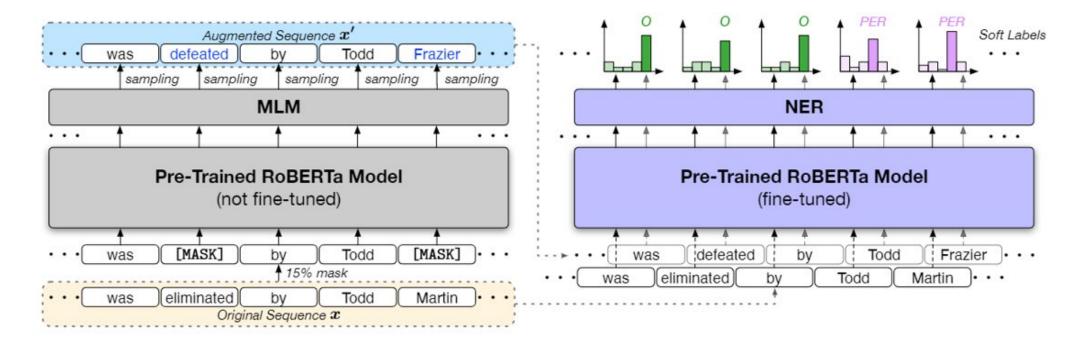
Challenge

- The biggest challenge of distantly-supervised NER is that the distant supervision may induce incomplete and noisy labels, because
 - the distant supervision source has limited coverage of the entity mentions in the target corpus
 - some entities can be matched to multiple types in the knowledge bases--such **ambiguity** cannot be resolved by the context-free matching process
- Straightforward application of supervised learning will lead to deteriorated model performance, as neural models have the strong capacity to fit to the given (noisy) data

Figure 1: Distant labels obtained with knowledge bases may be incomplete and noisy, resulting in wronglylabeled tokens.

RoSTER

RoSTER: Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training [EMNLP'21]



Method

- Noise-Robust Learning: Why straightforward application of supervised NER learning on noisy data is bad?
- When the labels are noisy, training with the Cross Entropy (CE) loss can cause overfitting to the wrongly-labeled tokens
- Generalized Cross Entropy Loss (GCE)

$$\mathcal{L}_{\text{GCE}} = \sum_{i=1}^{n} w_i \frac{1 - f_{i,y_i}(\boldsymbol{x}; \boldsymbol{\theta})^{1-q}}{1-q} \qquad w_i = \mathbb{1}\left(f_{i,y_i}(\boldsymbol{x}; \boldsymbol{\theta}) > \tau\right) \qquad \begin{array}{l} \text{Only use reliable labels} \\ \text{(model prediction agrees)} \end{array}$$

Rationale: Since our loss function is noise-robust, the learned model will be dominated by the correct majority in the distant labels instead of quickly overfitting to label noise; if the model prediction disagrees with some given labels, they are potentially wrong

Method

- Contextualized Augmentations with PLMs
- □ Randomly mask out 15% of tokens in the original sequence
- □ Feed the partially masked sequence into the pre-trained RoBERTa model
- Augmented sequence is created by sampling from the MLM output probability for each token
- Further enforce the label-preserving constraint:
- □ sample only from the top-5 terms of MLM outputs
- if the original token is capitalized or is a subword, so should the augmented one

Experiment Results

Main Results

	Mathada		CoNLL03			OntoNotes5.0			Wikigold			
Methods		Pre.	Rec.	F1	Pre.	Rec.	F1	Pre.	Rec.	F1		
	Distant Match	0.811	0.638	0.714	0.745	0.693	0.718	0.479	0.476	0.478		
Distant-Sup	Distant RoBERTa	0.837	0.633	0.721	0.760	0.715	0.737	0.603	0.532	0.565		
	AutoNER	0.752	0.604	0.670	0.731	0.712	0.721	0.435	0.524	0.475		
	BOND	0.821	0.809	0.815	0.774	0.701	0.736	0.534	0.686	0.600		
D	RoSTER (Ours)	0.859	0.849	0.854	0.803	0.775	0.789	0.649	0.710	0.678		
p.	BiLSTM-CNN-CRF	0.914	0.911	0.912	0.888	0.887	0.887	0.554	0.543	0.549		
Sup.	RoBERTa	0.906	0.917	0.912	0.886	0.890	0.888	0.853	0.876	0.864		

Table 2: Performance all methods on three datasets measured by precision (Pre.), recall (Rec.) and F1 scores.

Outline

- Phrase Mining
- Named Entity Recognition
- Taxonomy Construction
 - **Taxonomy Basics and Construction**
 - Set Expansion
 - Taxonomy Construction (with Minimal User Guidance)
 - Taxonomy Expansion & Enrichment
- Relation Extraction and Knowledge Graph Construction

What Is Taxonomy?

- Taxonomy is a hierarchical (or DAG) organization of concepts
 - Ex.: Wikipedia category, ACM CCS Classification System, Medical Subject Heading (MeSH), Amazon Product Category, Yelp Category List, WordNet, ...

Why Do We Need Taxonomy?

- Taxonomy can benefit many knowledge-rich applications
 - Text Understanding
 - **Knowledge Organization**
 - **Document Categorization**
 - **Recommender System**

TPU

Corpus

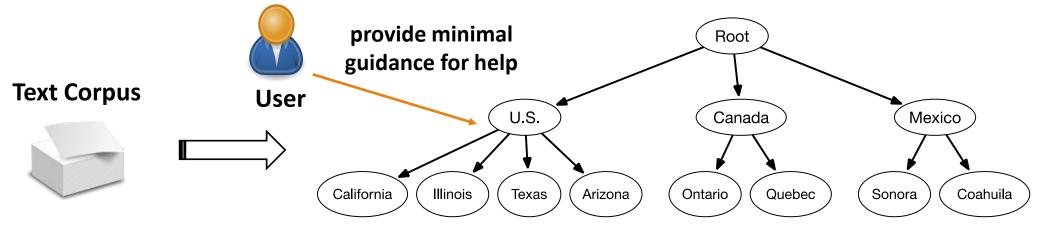
Multi-dimensional Corpus Index

2018

How to Get Taxonomy: Manual vs. Automated?

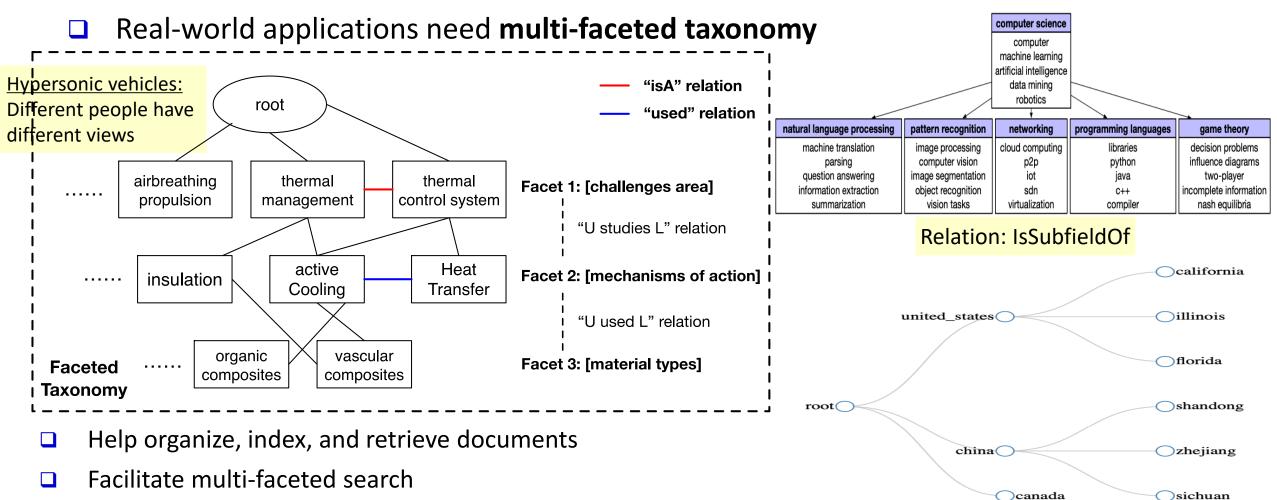
- Manual Curation
 - Time-consuming
 - Tremendous <u>human (experts) efforts</u>
 - Examples
 - Medical Subject Heading (MeSH): 60+ years
 - □ ACM CCS Classification System: 40+ years
 - IEEE Taxonomy: 40+ years

Automated taxonomy construction/enhancement from **text** is in great demand



Multi-Faceted Taxonomy

One facet only reflects a certain kind of relation between parent and child nodes



Relation: IsLocatedIn

Conduct analysis at meaningful levels of abstraction

Issues Related to Taxonomy Construction

Set Expansion

- Given a few seeds as a set, find other items and expand the set
- □ For example, given {*Illinois*, *Maryland*}, derive all U.S. states
- **Taxonomy Construction (with Minimal User Guidance)**
 - User give a seed skeleton taxonomy (in a small scale) and text corpus to build a taxonomy organized by certain relations
- Taxonomy Expansion & Enrichment
 - Update an already constructed taxonomy by adding new items on the existing taxonomy

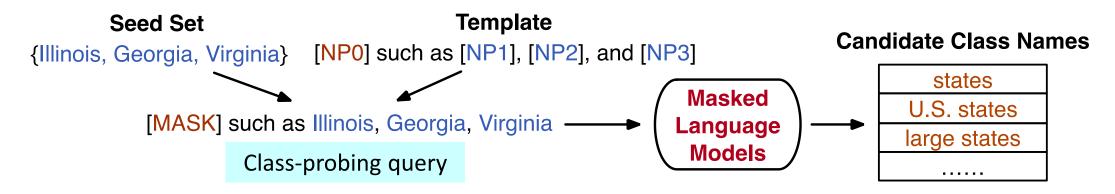
Outline

Phrase Mining

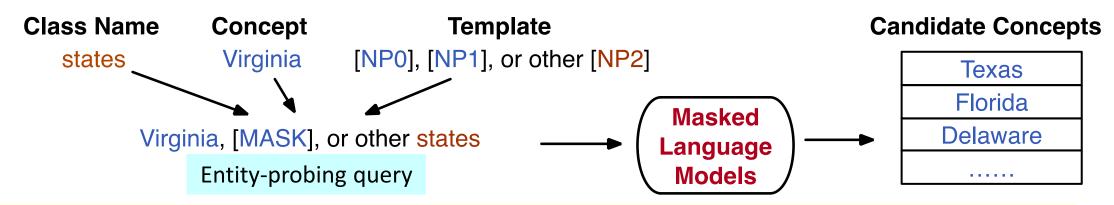
- Named Entity Recognition
- Taxonomy Construction
 - Taxonomy Basics and Construction
 - Set Expansion
 - Taxonomy Construction (with Minimal User Guidance)
 - Taxonomy Expansion & Enrichment
- Relation Extraction and Knowledge Graph Construction

CGExpan: Probing Language Model for Guidance

Generating the **target class names** by probing a language model



Preventing concept drifting with <u>Class Guided Expansion (CGExpan)</u>

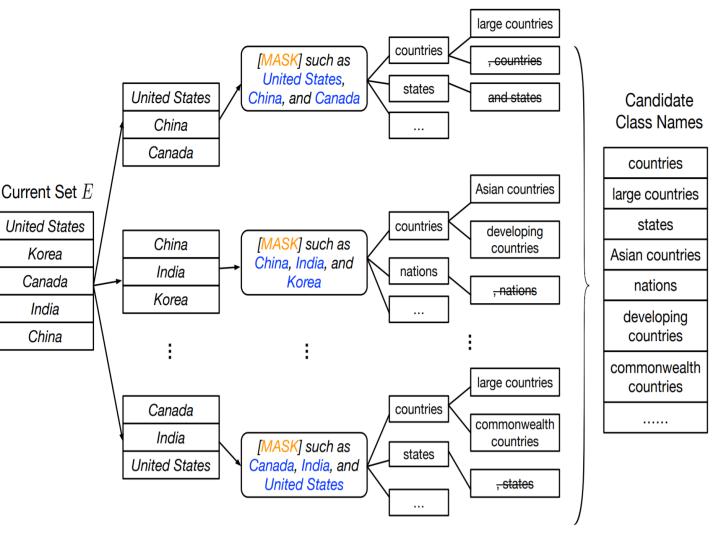


Yunyi Zhang, Jiaming Shen, Jingbo Shang, Jiawei Han, "Empower Entity Set Expansion via Language Model Probing", ACL'20

CGExpan 1: Class-Name Generation

Class name generation:

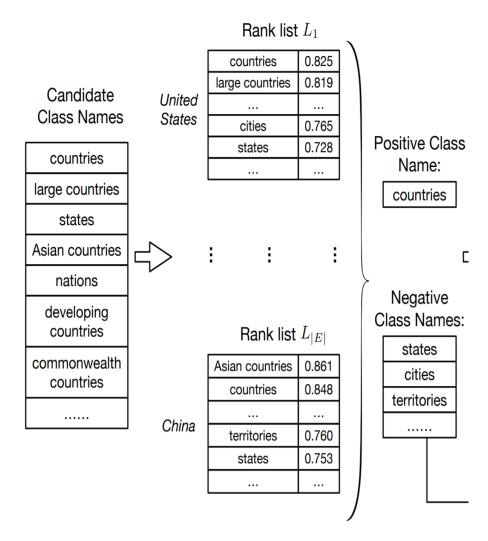
- Iteratively submit <u>class-probing</u> <u>queries</u> to a language model to get multi-gram class names
- Repeat the process by randomly sampling entities
- Keep all generated class names that are noun phrases



CGExpan 2: Class-Name Ranking

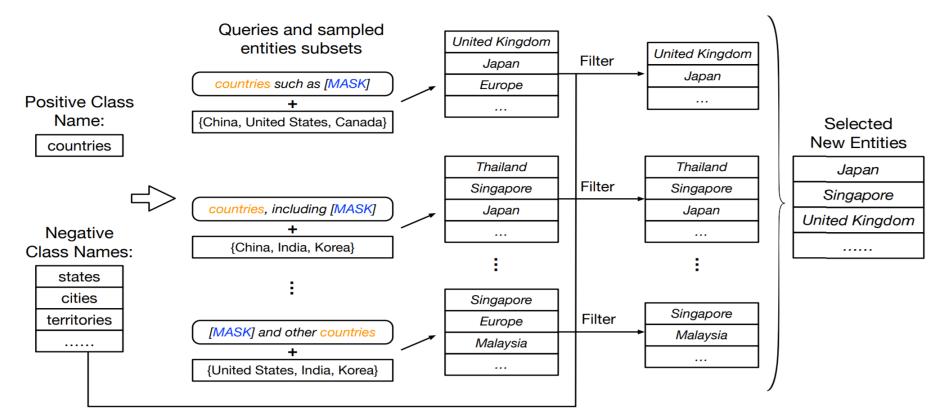
Class name ranking:

- Build <u>entity-probing queries</u> for each candidate class
- Compare the retrieved results with seed set to score each class name
- Rank the class names: select one best class name and several negative ones



CGExpan 3: Class-Guided Entity Selection

- **Class-guided entity selection** (by Rank ensemble)
 - Retrieve and score entities (including those currently in the expanded set) based on <u>entity probing queries</u> and selected class names
 - Select top-rank entities to expand the set



CGExpan: Quantitative Results

	Methods	Wikip	oedia	APR		
	wiethous	MAP@20	MAP@50	MAP@20	MAP@50	
	et (Rong et al., WSDM'16)	0.877	0.745	0.710	0.570	
Bootstrapping MCT	S (Yan et al. <i>,</i> ACL'19)	0.930	0.790	0.900	0.810	
_ SetE	xpander (Mamou et al., EMNLP'18)	0.439	0.321	0.208	0.120	
One time text ranking - CaSE	(Yu et al., SIGIR'19)	0.806	0.588	0.494	0.330	
- SetE	kpan (ECMLPKDD'17)	0.921	0.720	0.763	0.639	
Our solutions - SetC	oExpan (WWW'20)	0.964	0.905	0.915	0.830	
CGEx	(pan (ACL'20)	0.978	0.902	0.990	0.955	

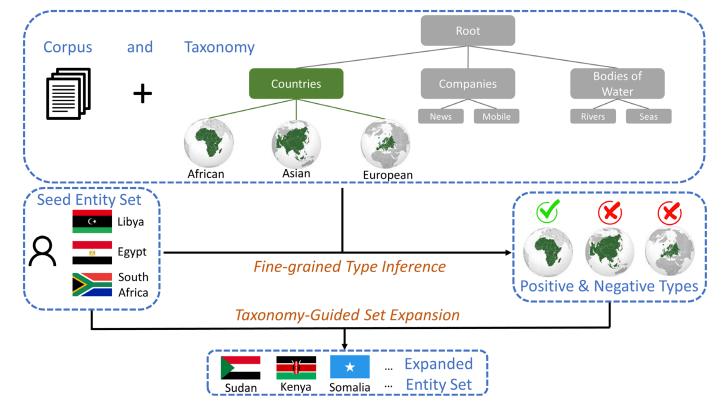
MAP@K: Mean Average Precision truncated at position K

- vs. Bootstrapping: better address the concept drifting issue
- vs. One time text ranking: better leverage seed supervision iteratively

Wikipedia: 1.5M Wikipedia article sentences (20 semantic classes manually labeled for evaluation); **APR**: 1.1M news article sentences (40 semantic classes manually labeled for evaluation)

FGExpan: Fine-Grained Set Expansion

- **Expanding entity sets at the finest possible granularity on a type taxonomy**
- E.g., If the seeds are all African countries, then we should not add countries on other continents into the expanded set

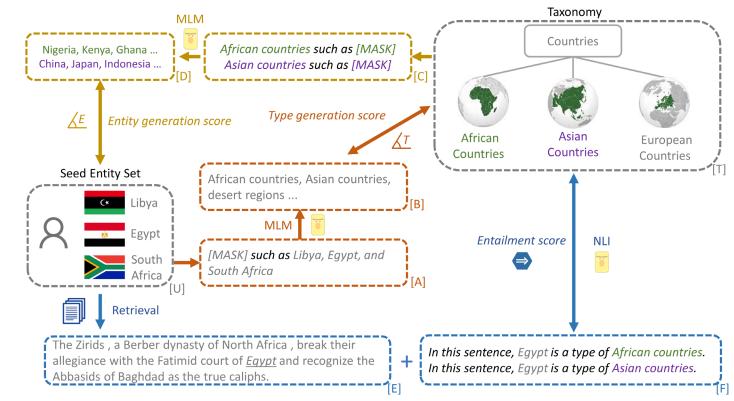


Jinfeng Xiao, Mohab Elkaref, Nathan Herr, Geeth De Mel, and Jiawei Han. "Taxonomy-Guided Fine-Grained Entity Set Expansion" SDM'23

37

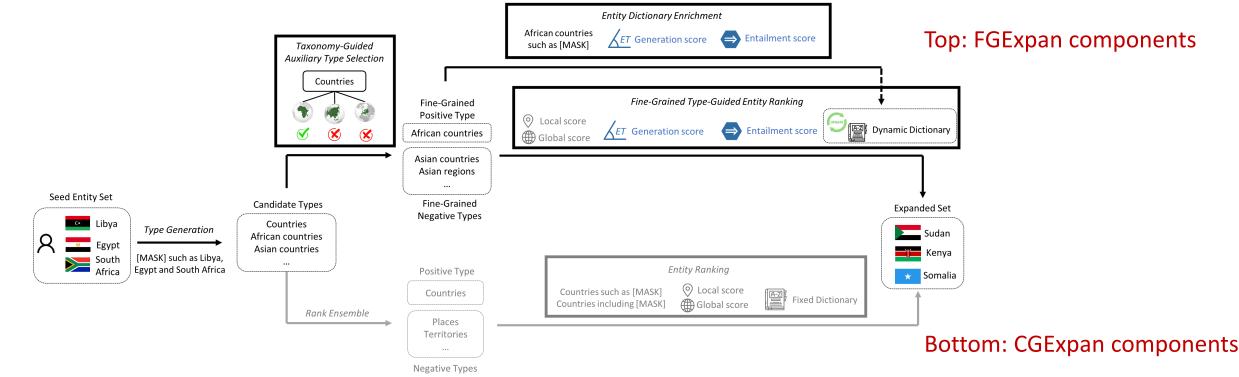
FGExpan: Fine-Grained Type Inference

- Combine three scores to infer the fine-grained type of a seed set
 - **Entity generation score**: Generate entities for each type and compare to the seed set
 - □ Type generation score: Generate types for seeds and compare to the taxonomy
 - Entailment score: Test if the types are supported by the corpus context



FGExpan: Taxonomy-Guided Expansion

- Taxonomy-guided auxiliary type selection: Use the type taxonomy to sharpen the distinctiveness between positive and negative types
- **Entity dictionary enrichment**: Dynamically add new entities to the vocabulary
- Fine-grained type-guided entity ranking: Use generation and entailment scores to tighten the semantic boundary of fine-grained types



FGExpan: Quantitative Results

Prevents critical failures due to semantic drifts in the inferred type of the entity set

Table 3: Fine-Grained Set Expansion Results										
There are a Databased by the	Positive T	ype	AP	@10						
Taxomony Path	FGExpan	CGExpan	$\operatorname{FGExpan}$	CGExpan						
$loc \rightarrow celestial$	celestial objects	planets	0.678	0.3						
$loc \rightarrow city$	cities	cities	1.0	1.0						
$loc \rightarrow geo \rightarrow body of water \rightarrow river$	rivers	places	0.7	0.033						
$loc \rightarrow geo \rightarrow body \text{ of water } \rightarrow sea$	seas	oceans	1.0	0.767						
$loc \rightarrow geo \rightarrow body \text{ of water} \rightarrow lake$	lakes	lakes	0.89	0.879						
$\operatorname{org} \to \operatorname{Co.} \to \operatorname{broadcast}$	broadcasting companies	channels	0.89	0.707						
org \rightarrow Co. \rightarrow entertainment	entertainment companies	companies	0.737	0.2						
$\operatorname{org} \to \operatorname{Co.} \to \operatorname{mobile} \operatorname{phone} \operatorname{maker}$	mobile phone makers	companies	1.0	0.753						
$loc \rightarrow country \rightarrow European$	European countries	countries	0.707	0.643						
$loc \rightarrow country \rightarrow Asian$	Asian countries	Asian countries	1.0	1.0						
$loc \rightarrow country \rightarrow A frican$	African countries	countries	0.776	0.308						
$loc \rightarrow country \rightarrow Americas$	countries in Americas	countries	0.653	0.45						
$loc \rightarrow country \rightarrow Oceanian$	Oceanian countries	countries	0.581	0.193						
$\operatorname{org} \rightarrow \operatorname{education}$	educational institutes	universities	0.7	0.7						
$\operatorname{org} \rightarrow \operatorname{government}$	government agencies	agencies	1.0	1.0						
$\text{org} \rightarrow \text{military}$	military units	military forces	0.737	0.538						
$\text{org} \rightarrow \text{political party}$	political parties	opposition parties	0.879	0.852						
$\operatorname{org} \to \operatorname{sports} \operatorname{team}$	sports teams	baseball teams	0.483	0.3						
other \rightarrow body part	body parts	facial features	0.879	0.879						
other \rightarrow currency	currencies	currencies	0.89	0.89						
other \rightarrow event \rightarrow holiday	holidays	festivals	0.3	0.25						
other \rightarrow food	foods	foods	1.0	0.879						
other \rightarrow health \rightarrow malady	diseases	physical symptoms	0.9	0.448						
other \rightarrow language	languages	languages	0.753	0.657						
other \rightarrow living thing \rightarrow animal	animals	animals	1.0	0.866						
other \rightarrow product \rightarrow car	cars	small cars	0.4	0.355						
other \rightarrow product \rightarrow weapon	weapons	weapons	0.762	0.523						
$person \rightarrow title$	titles	positions	1.0	1.0						
overall (MAP@10)			0.796	0.620						

MAP up by 0.176

40

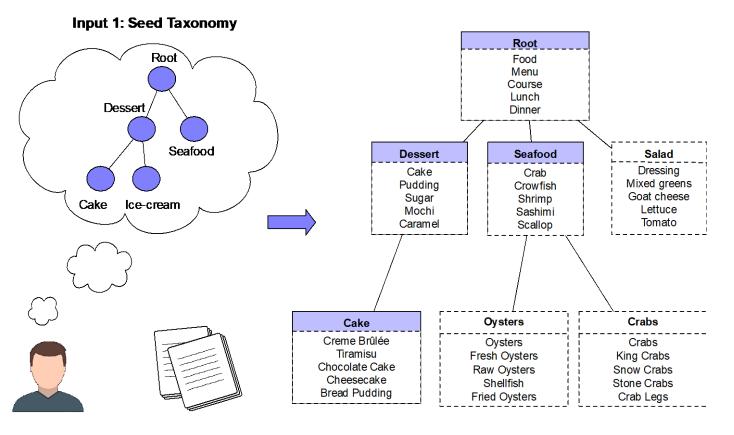
Outline

Phrase Mining

- Named Entity Recognition
- Taxonomy Construction
 - **Taxonomy Basics and Construction**
 - Set Expansion
 - Taxonomy Construction (with Minimal User Guidance)
 - Taxonomy Expansion & Enrichment
- Relation Extraction and Knowledge Graph Construction

Seed-Guided Topical Taxonomy Construction

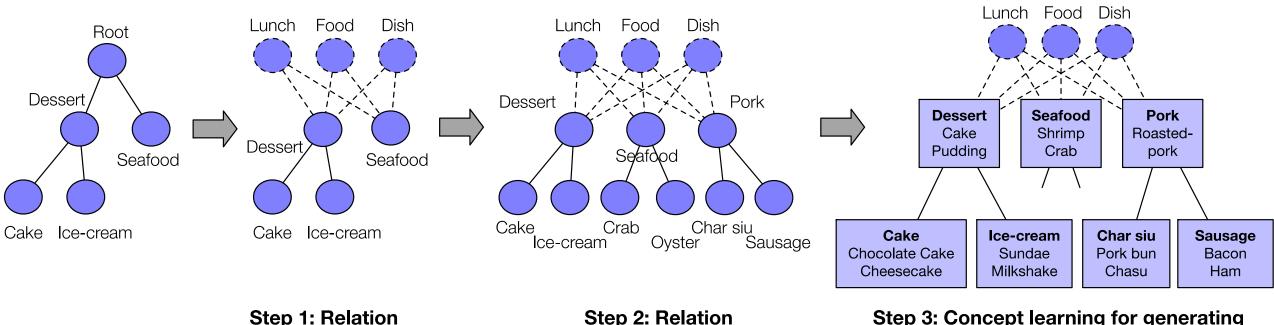
- User gives a seed taxonomy as guidance
- A more complete topical taxonomy is generated from text corpus, with each node represented by a cluster of terms (topics)



- A user might want to learn about concepts in a certain aspect (e.g., *food* or *research areas*) from a corpus
- He wants to know more about other kinds of food

User

CoRel: Seed-Guided Topical Taxonomy Construction by Concept Learning and Relation Transferring



Three Steps:

transferring upwards

Step 2: Relation transferring downwards

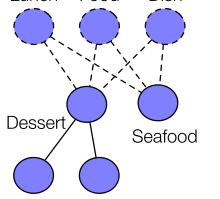
Step 3: Concept learning for generating topical clusters

- 1. Learn a relation classifier and transfer the relation upwards to **discover common root concepts** of existing topics
- 2. Transfer the relation downwards to find new topics/subtopics as child nodes of root/topics
- 3. Learn a discriminative embedding space to find distinctive terms for each concept node in the taxonomy

Jiaxin Huang, Yiqing Xie, Yu Meng, Yunyi Zhang and Jiawei Han, "CoRel: Seed-Guided Topical Taxonomy Construction by Concept Learning and Relation Transferring", KDD (2020)

Relation Learning and Transferring

- Learn a relation classifier using pretrained language model (e.g., BERT)
 - Using a weakly-supervised text embedding framework
- □ Transfer the relation upwards to discover possible root nodes (e.g., "Lunch" and "Food")
 - The root node would have more general contexts for us to find connections with potential new topics



- **C** Extract a list of parent nodes for each seed topic using the relation classifier
 - The common parent nodes shared by all user-given topics are treated as root nodes
- ☐ To discover new topics (e.g., Pork), we transfer the relation downwards from the root nodes

Qualitative and Quantitative Results

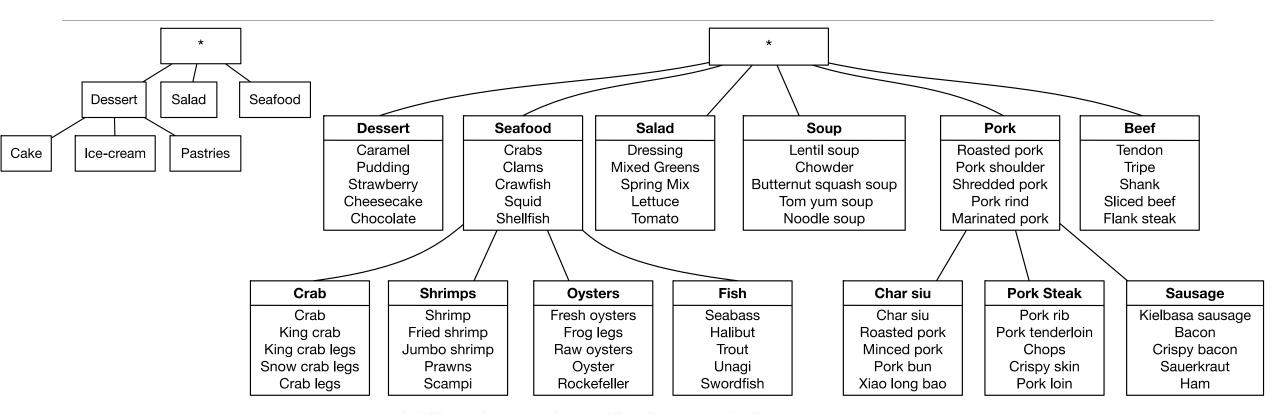


Table 5: Quantitative evaluation on topical taxonomies.

Methods	DBLP						Yelp						
	TC	SD	$Precision_r$	Recall _r	F1-score _r	TC	SD	Precision _r	Recall _r	F1-score,			
HLDA	0.582	0.981	0.188	0.577	0.283	0.517	0.991	0.135	0.387	0.200			
HPAM	0.557	0.905	0.362	0.538	0.433	0.687	0.898	0.173	0.615	0.271			
TaxoGen	0.720	0.979	0.450	0.429	0.439	0.563	0.965	0.267	0.381	0.314			
Hi-Expan + CoL.	0.819	0.996	0.676	0.532	0.595	0.815	1.000	0.429	0.677	0.525			
CoRel	0.855	1.000	0.730	0.607	0.663	0.825	1.000	0.564	0.710	0.629			

Outline

Phrase Mining

- Named Entity Recognition
- Taxonomy Construction
 - **Taxonomy Basics and Construction**
 - Set Expansion
 - Taxonomy Construction (with Minimal User Guidance)
 - Taxonomy Expansion & Enrichment
- Relation Extraction and Knowledge Graph Construction

Taxonomy Expansion: Motivation

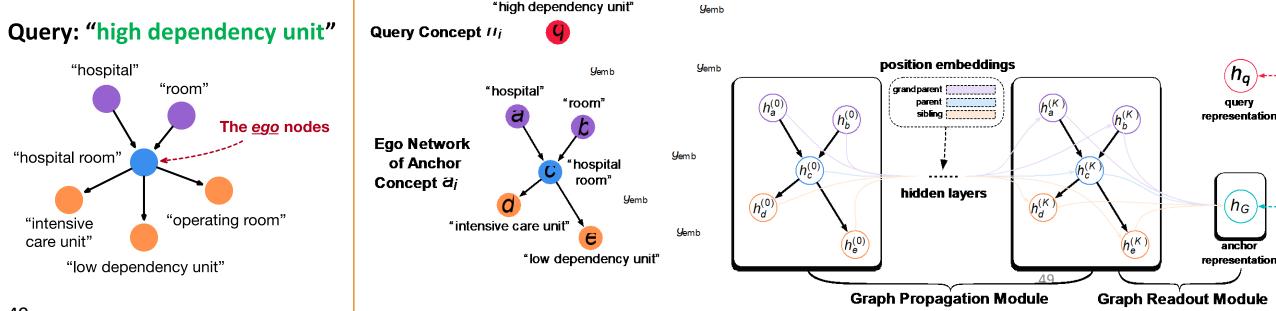
- Why taxonomy expansion instead of construction from scratch?
 - Already have a decent taxonomy built by experts and used in production
 - Most common terms are covered
 - New items (thus new terms) incoming everyday, cannot afford to rebuild the whole taxonomy frequently
 - Downstream applications require stable taxonomies to organize knowledge

TaxoExpan: Self-supervised Taxonomy Expansion with Position-Enhanced Graph Neural Network [WWW' 20]

- **Two steps** in solving the problem:
- Self-supervised term extraction
 - □ Automatically **extracts emerging terms** from a target domain
- Self-supervised term attachment
 - □ A multi-class classification to match a new node to its potential parent
 - Heterogenous sources of information (structural, semantic, and lexical) can be used

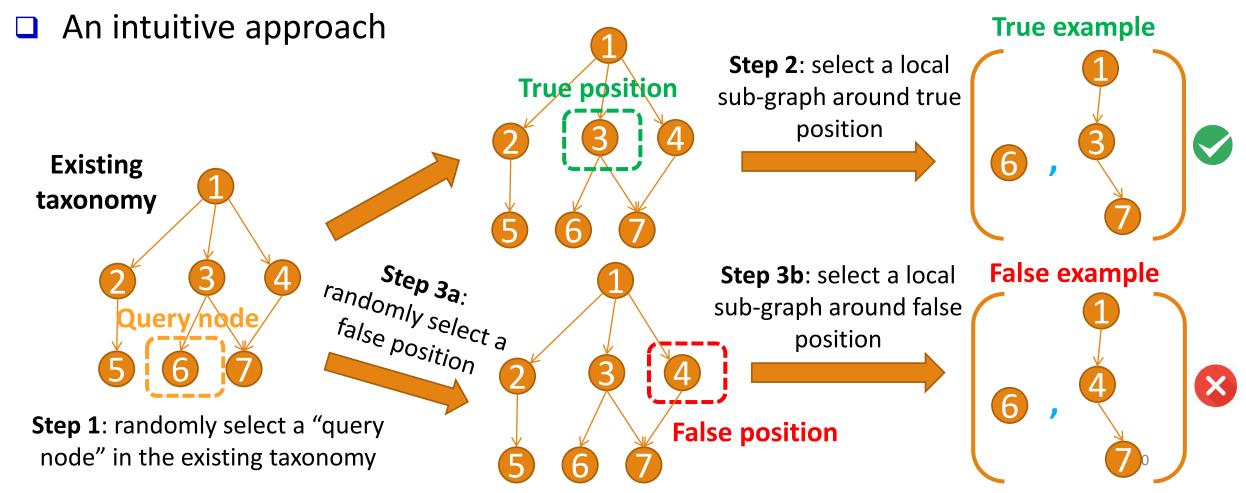
Self-supervised Term Attachment

- TaxoExpan uses a matching score for each <query, anchor > pair to indicate how likely the anchor concept is the parent of query concept
- □ Key ideas:
 - Representing the anchor concept using its ego network (egonet)
 - Adding position information (relative to the *query concept*) into this egonet



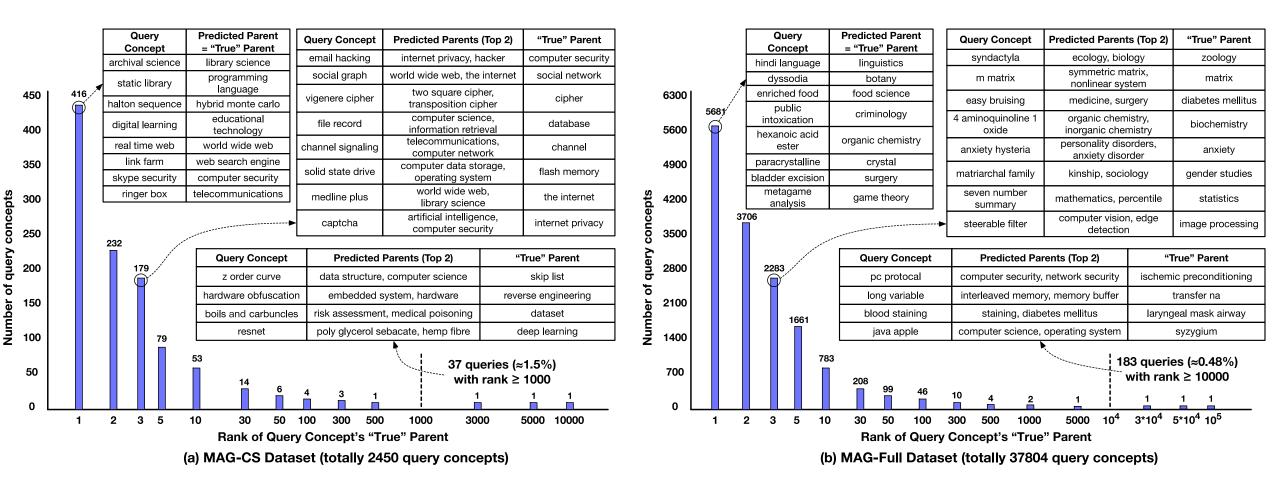
Leveraging Existing Taxonomy for Self-supervised Learning

How to learn model parameters without relying on massive humanlabeled data?



TaxoExpan Framework Analysis

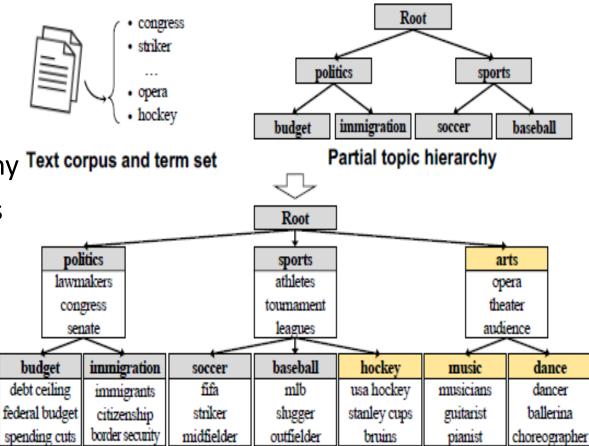
Case studies on MAG-CS and MAG-Full datasets



TaxoCom: Topic Taxonomy Completion with Hierarchical Discovery of Novel Topic Clusters

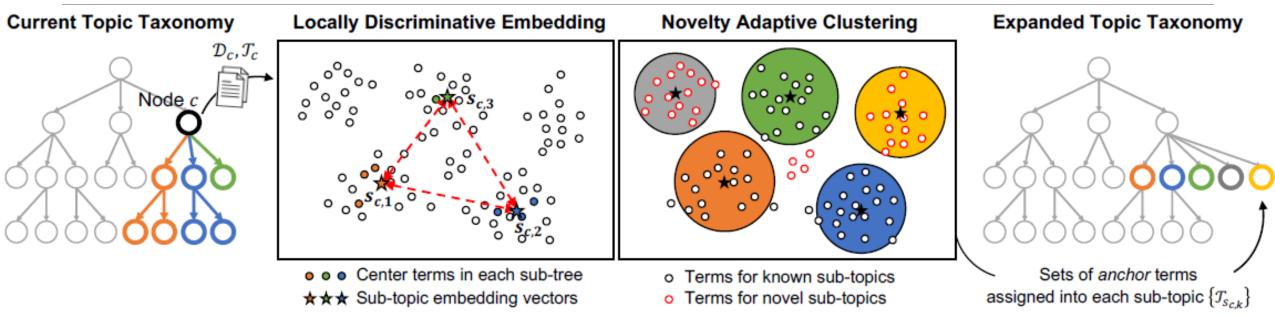
- □ Topic taxonomy completion: Task ≈ CoRel
- Results: Better quality than Corel
- Method:
 - Recursive expansion of a given topic hierarchy Text corpus and term set
 - Discovering novel sub-topic clusters of terms and documents

	dance	surveillance	number theory	accelerator physics			
	dance	surveillance	number theory	accelerator physics			
e	dancers	national security agency	birch	particle accelerators			
CoRel	new york city ballet	intelligence	mathematicians	linear accelerator			
0	american ballet theater	snowdennational	pure mathematics	conceptual design			
	choreography	security	number fields	mechanical design			
	choreographer	counterterrorism	class numbers	power converters			
	dance	surveillance	number theory	accelerator physics			
mo	choreography	surveillance	number theory	accelerator physics			
F >	ballet	eavesdropping	modular form	synchrotron			
LaxoC	dancers	spying	number fields	particle accelerators			
ak.	pas de deux	national security agency	iwasawa theory	linear accelerator			
L	balanchine	phone records	elliptic curves	storage ring			
	ballets	patriot act	prime number theorem	tevatron			



Dongha Lee, Jiaming Shen, SeongKu Kang, Susik Yoon, Jiawei Han, Hwanjo Yu, "TaxoCom: Topic Taxonomy Completion with Hierarchical Discovery of Novel Topic Clusters", WWW'22

TaxoCom: Hierarchical Discovery of Novel Topic Clusters

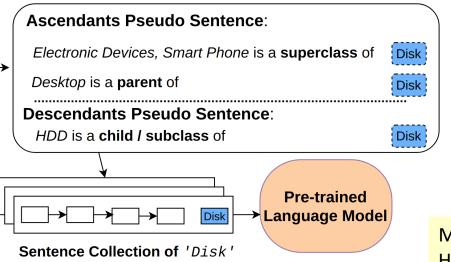


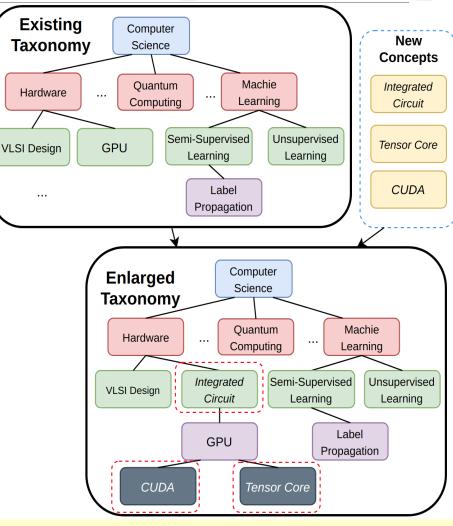
- Starting from the root node, it performs (i) locally discriminative embedding, and (ii) novelty adaptive clustering, to selectively assign the terms (of each node) into one of the child nodes
 - Locally discriminative embedding optimizes the text embedding space to be discriminative among known (i.e., given) sub-topics
 - Novelty adaptive clustering assigns terms into either one of the known sub-topics or novel sub-topics

TaxoEnrich: Self-Supervised Taxonomy Completion via Structure-Semantic Representations [WWW'22]

- Task: Inserting new concepts into an existing taxonomy
 - Find the relatedness between the concept and each candidate position
- How to capture extra semantic information?
 - Taxonomy-contextualized embedding
 - Layer-aware representation

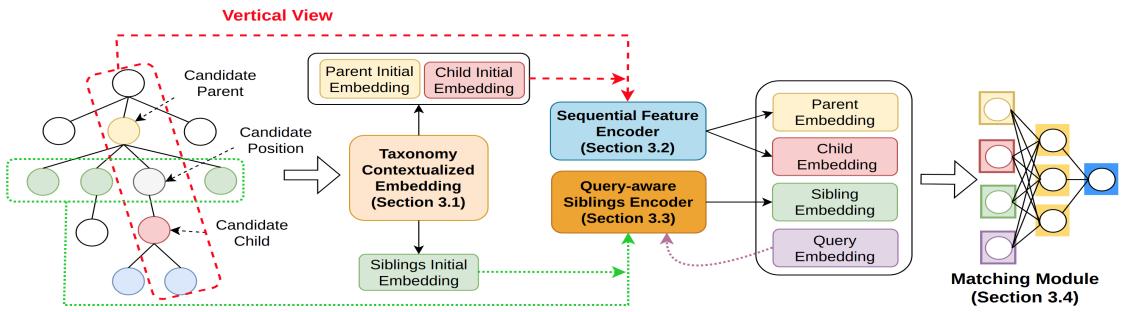






Minhao Jiang, Xiangchen Song, Jieyu Zhang and Jiawei Han, "TaxoEnrich: Self-Supervised Taxonomy Completion via Structure-Semantic Representations" (WWW'22)

TaxoEnrich: The General Framework



Horizontal View

55

- Taxonomy-contextualized embedding which incorporates both semantic meanings of concept and taxonomic relations based on powerful pretrained language models
- A taxonomy-aware sequential encoder which learns candidate position representations by encoding the structural information of taxonomy
- A query-aware sibling encoder which adaptively aggregates candidate siblings to augment candidate position representations based on their importance to the query-position matching
- A query-position matching model which extends existing work with new candidate position representations

Outline

Phrase Mining

- Named Entity Recognition
- Taxonomy Construction
- Relation Extraction and Knowledge Graph Construction
 - Document-Based Relation Extraction
 - Automated Event Type Induction
 - Event Schema Discovery: Role Prediction

Document-Level Relation Extraction

- Document-level relation extraction (DocRE)
 - Extract semantic relations among entity pairs in a document
- Blindly considering the full document?
 - A subset of the sentences in the doc ("evidence") should often be sufficient to identify the relation
- An evidence-enhanced DocRE framework: EIDER
 - Efficiently extracts evidence and effectively leverages the extracted evidence to improve DocRE
- Using a document-level relationship extraction dataset DocRED (2019)
- Relation extraction benefits natural language understanding in many ways
 - Ex. Knowledge graph construction

57

Head:Hero of the Day Tail:the United States Rel:[country of origin] GT evidence sentences: [1,10] Extracted evidence: [1,10]

Original document as input: [1] Load is the sixth studio album by the American heavy metal band Metallica, released on June 4, 1996 by Elektra Records in the United States ... [9] It was certified 5×platinum ... for shipping five million copies in the United States. [10] Four singles—"Hero of the Day", "Until It Sleeps", "Mama Said", and "King Nothing" — were released as part of the marketing campaign for the album. Prediction scores: NA: 17.63 country of origin: 14.79

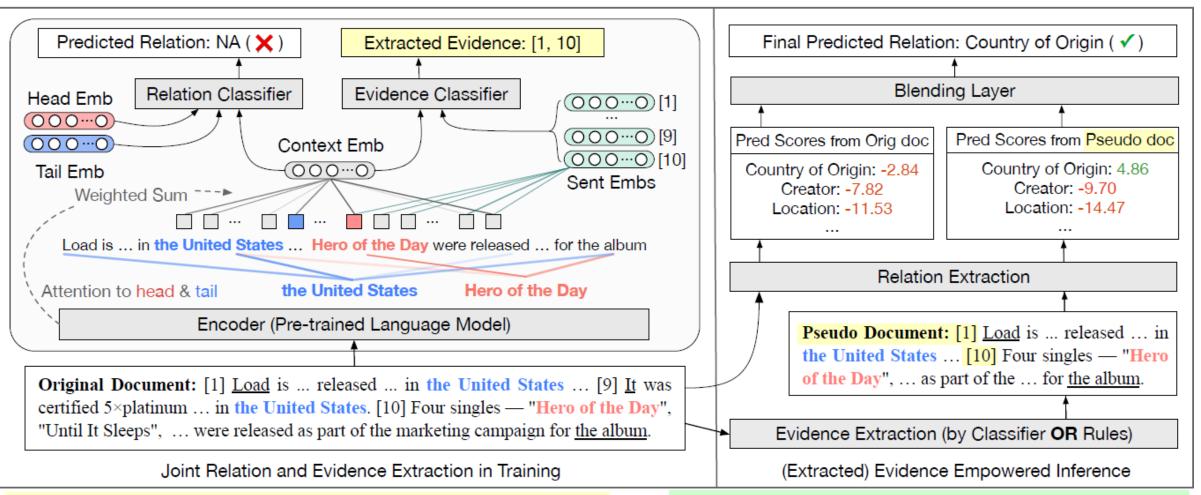
Extracted evidence as input:[1] Load is the sixth studioalbum... released ... in the United States... [10] Four singles— "Hero of the Day", ... were released ... for the album.Prediction scores:country of origin:18.31NA:13.45

Final prediction of our model: country of origin (✓)

Only need [1]+[10] to identify [head, relation, tail]

Yiqing Xie, Jiaming Shen, Sha Li, Yuning Mao, Jiawei Han, "<u>EIDER:</u> <u>Evidence-enhanced Document-level Relation Extraction</u>", ACL'22 Findings

EIDER Architecture



The left part (the training stage), we jointly extract relation and evidence using multi-task learning, where the two tasks have their own classifier and share the base encoder The right part (the inference stage), we fuse the predictions on the original document and the extracted evidence using a blending layer

58

Outline

Phrase Mining

- Named Entity Recognition
- Taxonomy Construction
- Relation Extraction and Knowledge Graph Construction
 - Document-Based Relation Extraction
 - Automated Event Type Induction
 - Event Schema Discovery: Role Prediction

New Event Type Representation

- About 90% of event types can be frequently triggered by a predicate verb
 - "frequently triggered": The event type is triggered by verbs more than five times

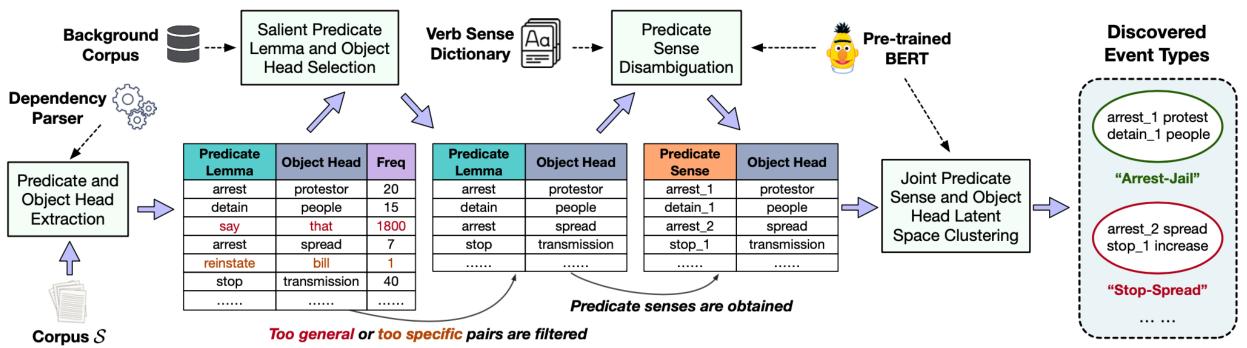
Datasets	ACE	ERE	RAMS
# of All Event Types	33	38	138
# of Verb Triggered Event Types	33	38	133
# of Verb Frequently Triggered Event Types	28	36	124

While predicate verbs could be ambiguous, their word senses combined with object heads can clearly indicate the event types
Represent an event type as a cluster

ID	Sentences	of <predicate head="" object="" sense,=""> (P-O) pairs</predicate>
S1	Hundreds of <i>people</i> are detained for distributing purported false information online.	detain_1 people arrest_1 people
S2	The Zimbabwe CTU said <u>69 <i>people</i></u> were arrested during Wednesday's demonstrations.	"Arrest-Jail" stop_1 planning
S3	Researchers say that vaccinating 46 percent of Haitians could arrest the <u>cholera <i>spread</i></u> .	arrest_2 spread stop_1 transmission "Stop-Plan"
S4	Collective efforts are needed by all nations to stop the <u>COVID-19 <i>transmission</i></u> .	"Stop-Spread"
S5	More censorship of social media posts are enforced to stop protest <i>planning</i> online.	ETypeClus: Induce event types by finding those P-O pair clusters [EMNLP'21]

ETypeClus: Automated Event Type Induction

- Step 1: Extract predicates and object heads from corpus (Use a dependency parser + a set of linguistic rules)
- **Step 2**: Select salient predicate lemmas and object heads
- **Step 3**: Disambiguate predicate senses
- **Step 4**: Cluster < predicate sense, object head> pairs in a latent spherical space



Predicate Sense Disambiguation

- Key idea: compare the usage of a predicate with each verb sense's example sentences in the verb sense dictionary
- □ How? Use the contextualization power of PLMs:
 - Continuous representation: hidden representation of the last layer
 - Discrete features: mask the target verb and let
 PLM predict the most possible replacements

Step 3.1a: Obtain BERT embedding

My dad's cousin was *executed* by the mafia for collaborating ...

 $[-0.234,\, 0.165,\, 1.564,\, -0.234,\, -0.557,\, 0.413,\, 0.165,\, 0.234...]$

Execute; 3 senses
Sense 1: Put to Death Example 1: He was <u>executed</u> for murder. Example 2: He is the first federal prisoner to be <u>executed</u> in 38 years. Example 3: My dad's cousin was <u>executed</u> by the mafia for collaborating with the police.
Sense 2: Do, Put to Effect Example 1: We will see the deal <u>executed</u> as planned Example 2: The whole play was <u>executed</u> with great precision. Example 3:I <u>executed</u> a program I had written many times and got valid output.
Sense 3: Sign a legal document before witnesses Example 1: The president executed the treaty.

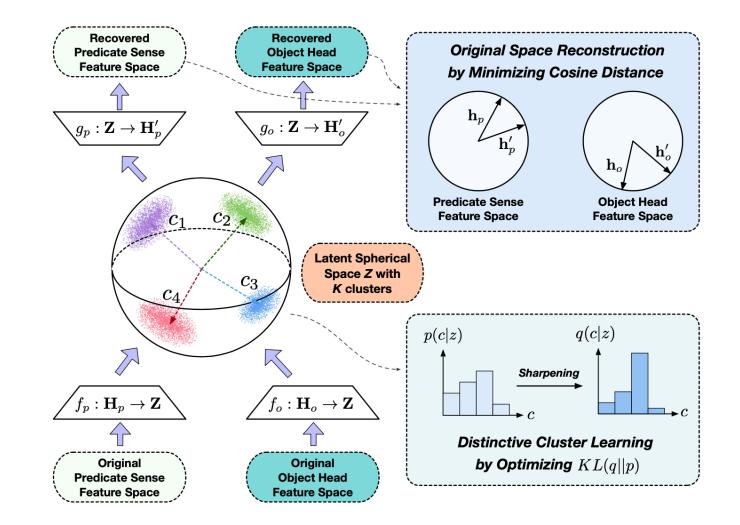
Step 3.1b: Obtain BERT masked prediction results

My dad's cousin was [MASK] by the mafia for collaborating ...

{killed: 0.66, wanted: 0.09, murdered: 0.04, executed: 0.02, ...}

Cluster <predicate sense, object head> pairs in a latent spherical space

- Joint Embedding and Clustering
 - We propose to jointly embed and cluster P-O pairs in a latent
 spherical space
 - The P-O pair embedding learning is guided by the clustering objective
 - The clustering quality is improved with the good structure of the latent space



Experiments on ACE and ERE Datasets

Recover human-labeled event types

Identify **new types** and **finer-grained types** compared with human labeled ones

- Run ETypeClus to generate 100 candidate clusters
 - On ACE dataset, we recover 24 out 33 types (19 out of 20 most frequent types)
 - On ERE dataset, we recover 28 out 38 types (18 out of 20 most frequent types)

Event Type	Top Ranked P-O Pairs	Example Sentences in Corpus
Arrest-Jail	<pre> {arrest_0, protester} {arrest_0, militant} {arrest_0, suspect} </pre>	 For the most part the marches went off peacefully, but in New York a small group of <u>protesters</u> were arrested after they refused to go home at the end of their rally, police sources said. On Tuesday, Saudi security officials said three suspected al-Qaida <u>militants</u> were arrested in Jiddah, Saudi Arabia.
Build⊽	<pre>{build_0, facility} {build_0, center} {build_0, housing}</pre>	 Plans were underway to build destruction <i>facilities</i> at all other locations but now the Bush junta has removed from its proposed defense budget for fiscal year 2006 all but the minimum funding. Virginia is apparently going to be build a data <i>center</i> in Richmond, a back-up data center, and a help desk/call center as a follow-on to the creation of VITA, the Virginia Information Technology Agency.
Transfer-Money	<pre>{fund_0, activity> {fund_0, operation> {fund_0, people></pre>	 The grants will fund advisory <u>activities</u>, including local capacity building, infrastructure development and product development. The White House had hoped to hold off asking for more money to fund military <u>operations</u> in Iraq and Afghanistan until after the election, but with costs rising faster than expected, it sent a request for an early installment of \$25 billion to Congress this week.
Bombing $^{ abla}$	<pre>{bomb_0, factory}</pre>	 He bombed the Aspirin <i>factory</i> in 1998 (which turned out to have nothing to do with Bin Laden) the week he revealed he had been lying to us for eight months about Lewinsky. Prosecutors then also pointed to the men's suicide bomber training in 2011 in Somalia and association with Beledi, who prosecutors said bombed a government <u>checkpoint</u> in Mogadishu that year.

Experiments on Pandemic Dataset

Hu	man Intrusion Test	of	Methods	K-Menas	AggClus	JCSC	ETYPECLUS		
	Pair Cluster Qualit		Accuracy	86.7	64.4	54.4	91.1		
Interesting event types Examples sentences for identified even								nt types	
Event Type	Top Ranked P-O Pairs	E	xample Sentence	es in Corpus					
Spread Virus	<pre> ⟨spread_2, virus⟩ ⟨spread_2, disease⟩ ⟨spread_2, coronavirus⟩ </pre>	• F	 What is the best way to keep from spreading the <u>virus</u> through coughing or sneezing? Farmers quickly mobilized to fight the misperceptions that pigs could spread the <u>disease</u>. In the UK, Asians have been punched in the face, accused of spreading <u>coronavirus</u>. 						
Prevent Spread	<pre> ⟨prevent_1, spread⟩ ⟨mitigate_1, spread⟩ ⟨mitigate_1, transmission⟩ </pre>	• A	 Infection prevention and control measures are critical to prevent the possible <u>spread</u> of MERS-CoV. A vaccine can mitigate <u>spread</u>, but not fully prevent the virus circulating. Asymptomatic infection could also potentially be directly harnessed to mitigate <u>transmission</u>. 						
Vaccinate People	<pre></pre>	n • (nonovalent vacc	ine and the seaso mmunizing Peop	onal influenza v ole Against CO	accine. VID-19 On	nould be vaccinated w Tuesday, Officials Sa to vaccinate and edu	у.	

Outline

Phrase Mining

- Named Entity Recognition
- **Taxonomy Construction**
- Relation Extraction and Knowledge Graph Construction
 - **Document-Based Relation Extraction**
 - **Automated Event Type Induction**
 - Event Schema Discovery: Role Prediction

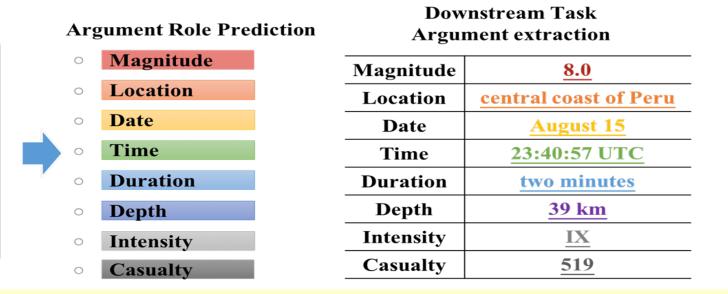
Open-Vocabulary Argument Role Prediction

□ Related Work:

- Most of existing studies rely on hand-crafted ontologies (costly, cannot generalize)
- A few studies try to automatically induce argument roles (limited pre-defined glossary)
- New Task: Infer a set of argument role names for a given event type to describe the crucial relations between the event type and its arguments

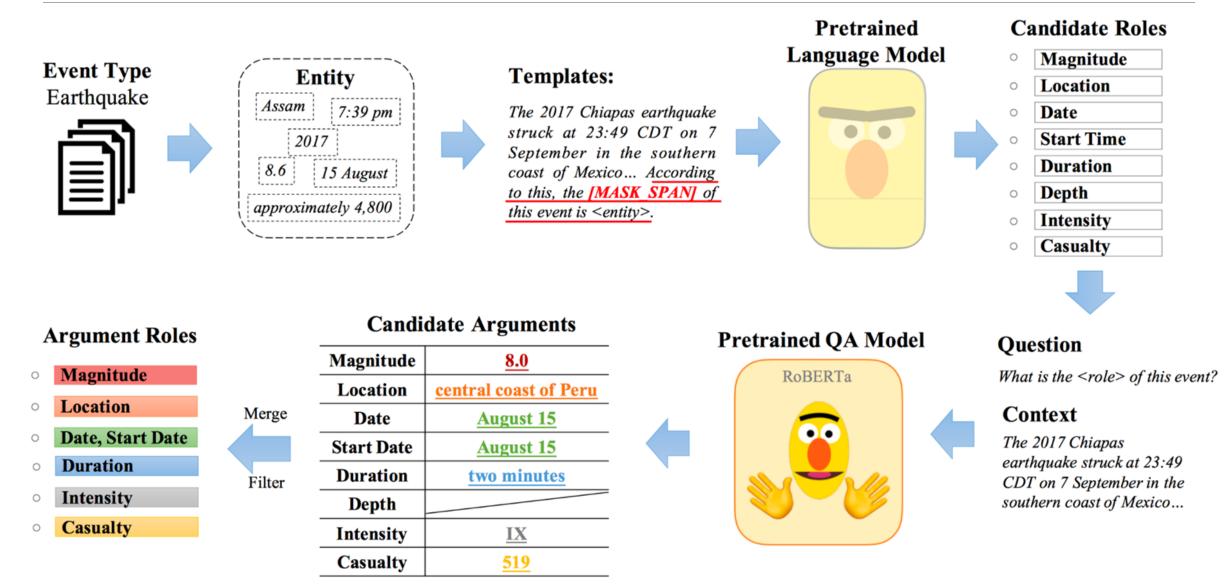
Event Type: Earthquake

The 2007 Peru earthquake, which measured 8.0 on the moment magnitude scale, hit the <u>central coast of Peru</u> on <u>August 15</u> at 23:40:57 UTC (18:40:57 local time) and lasted <u>two minutes</u>. The epicenter was located 150 km (93 mi) south-southeast of Lima at a depth of 39 <u>km</u> (24 mi). The United States Geological Survey National Earthquake Information Center reported that it had a maximum Mercalli intensity of <u>IX</u>. The Peruvian government stated that <u>519</u> people were killed by the quake.



Yizhu Jiao, Sha Li, Yiqing Xie, Ming Zhong, Heng Ji and Jiawei Han "Open-Vocabulary Argument Role Prediction for Event Extraction", EMNLP'22

Framework for RolePred (Argument Role Prediction)



RolePred 1: Candidate Role Generation

- Predict candidate role names for named entities by casting it as a prompt-based in-filling task
- Prompt Construction: (using Generation Model : T5)
 - Context. According to this, the (MASK SPAN) of this Event Type is Entity.
- Ex. The 1964 Alaskan earthquake, also known as the Great Alaskan earthquake, occurred at 5:36 PM AKST on Good Friday, March 27. According to this, the (MASK SPAN) of this earthquake is 5:36 PM.
 - □ 〈MASK SPAN〉 is expected to be filled with *time* (or *start time*) as the argument role
- Considering the entity's general semantic type: person, location, number, etc., we slightly alter the prompt to fluently and naturally support the unmasking argument roles

Entity Type	Prompt	Prompt design for different entities
PERSON	According to this, Entity play the role of (MASK SP	AN in this Event Type.
LOCATION	According to this, the (MASK SPAN) is Entity i	n this Event Type.
NUMBER	According to this, the number of $\langle MASK SPAN \rangle$ of the	is Event Type is Entity.
OTHER TYPES	According to this, the $\langle MASK SPAN \rangle$ of this Eve	ent Type is Entity.

RolePred 2: Candidate Argument Extraction

- **G** Formulate the argument extraction problem into question-answering task
- Input: follow a standard BERT-style format (Model: BERT based pretrained QA model)
 - [CLS] What is the Event Role in this Event Type event? [SEP] Document [SEP]
- Ex. [CLS] What is the <u>casualty</u> in this <u>pandemic</u> event? [SEP] The COVID-19 pandemic is an ongoing global pandemic of coronavirus disease. It's estimated that the worldwide total number of deaths has exceeded five million ... [SEP]
 - □ The argument is expected to be five million
 - Note that, for some roles, a given document may not mention its argument. That is, the above-constructed question can be unanswerable. Thus, for each extracted answer, we set a threshold on its probability from the QA model to filter out some unreliable results.
- Benefit
- Widely adaptable to any argument role or event type
- Judge if some arguments exist
- Search for arguments in a document (not within a sentence)

RolePred 3: Argument Role Selection

Role Filtering

- Judge the salience of an argument role by involving multiple event instances of the same type
 - **Ex.** *intensity* of the *earthquake* events; *host* for the *award ceremony* events
- A role name belongs to the event type only if most of the event instances have their associated argument
- Role Merging
 - Different roles can represent similar semantics and share the same arguments in an event
 - Ex. The *date, official date,* and *original date* may refer to the same day for a firework event
 - The semantic similarity of two roles is determined by the frequency that they share the same argument in the event instances
 - Ex. Given 10 instances of the firework event, if two roles, *date*, and *official date*, have the same day as their arguments in 5 instances, their similarity is 0.5

Experiment: Argument Role Prediction

Argument Role Pred	liction —	Hard Matching			Soft Matching		Argume	nt Extractio	on w/o	Gold	en Roles
Models	Precisior		F1	Precision	Recall	F1	Models		Р	R	F1
LiberalEE VASE ODEE CLEVE	0.1342 0.0926 0.1241 0.1363	0.2613 0.1436 0.3076 0.2716	0.1773 0.1125 0.1768 0.1815	0.3474 0.2581 0.3204 0.3599	0.5340 0.4274 0.4862 0.5712	0.4209 0.3218 0.3862 0.4415	LiberalF VASE ODEE CLEVE		0.2009 0.2123 0.2402 0.3529	0.2941 0.3257 0.3712 0.3890	0.2387 0.2570 0.2917 0.3701
ROLEPRED (BERT) ROLEPRED (T5) - RoleMerge - RoleMerge - RoleFilter	0.2128 0.2552 0.2233 0.1928	0.4582 0.6461 0.6962 0.6582	0.2906 0.3659 0.3381 0.2983	0.4188 0.4591 0.4234 0.4188	0.6896 0.7079 0.7677 0.7084	0.5211 0.5570 0.5457 0.5264	ROLEPI - Role - Role	RED (BERT) RED (Roberta) Merge Merge - RoleFilter RED (Gold Roles)	0.4170 0.4131 0.3855 0.4397 0.6664	0.4333 0.5774 0.6187 0.5001 0.4948	0.4250 0.4817 0.4750 0.4679
Human	0.6098	0.8270	0.7020	0.7365	0.8732	0.7990	Robbin	× /	f RolePred	0.1710	0.0017
An example of generated roles	victims	cause	death toll		by Role	ed events Pred and elines	State Date Killer	Maura Bi	nkley and N Flori November Scott Paul	<u>da</u> 2, 2018 Beierle	<u>1 Vessem</u>
state	shoot killer perpet gunman suspec	rator date	d time day motive				Place Time Duration Motive Target Year		The yoga 5:37 p.m ree and a ha hatred of ssee Hot Yog 201	. EDT alf minute women ga, a yoga	
target	Duration	scene site location	year				Output of Agent Patient	f ODEE The gunman six women	Agent Patient	six	aul Beierle women
72								_	Time		2018

References I

- Xiaotao Gu, Zihan Wang, Zhenyu Bi, Yu Meng, Liyuan Liu, Jiawei Han, Jingbo Shang. "UCPhrase: Unsupervised Context-aware Quality Phrase Tagging" (KDD'21)
- Jiaxin Huang, Chunyuan Li, Krishan Subudhi, Damien Jose, Shobana Balakrishnan, Weizhu Chen, Baolin Peng,
 Jianfeng Gao, and Jiawei Han. "Few-Shot Named Entity Recognition: An Empirical Baseline Study" (EMNLP'21)
- Jiaxin Huang, Yu Meng, and Jiawei Han. "Few-Shot Fine-Grained Entity Typing with Automatic Label Interpretation and Instance Generation" (KDD'22)
- Jiaxin Huang, Yiqing Xie, Yu Meng, Yunyi Zhang and Jiawei Han, "CoRel: Seed-Guided Topical Taxonomy Construction by Concept Learning and Relation Transferring" (KDD'2020)
- Minhao Jiang, Xiangchen Song, Jieyu Zhang and Jiawei Han, "TaxoEnrich: Self-Supervised Taxonomy Completion via Structure-Semantic Representations" (WWW'22)
- Yizhu Jiao, Sha Li, Yiqing Xie, Ming Zhong, Heng Ji, and Jiawei Han. "Open-Vocabulary Argument Role Prediction for Event Extraction" (EMNLP'22)
- Dongha Lee, Jiaming Shen, SeongKu Kang, Susik Yoon, Jiawei Han, and Hwanjo Yu. "TaxoCom: Topic Taxonomy Completion with Hierarchical Discovery of Novel Topic Clusters" (WWW'22)

References II

- Yu Meng, Yunyi Zhang, Jiaxin Huang, Xuan Wang, Yu Zhang, Heng Ji, and Jiawei Han. "Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training" (EMNLP'21)
- Jiaming Shen, Zeqiu Wu, Dongming Lei, Jingbo Shang, Xiang Ren, Jiawei Han. "SetExpan: Corpus-based Set Expansion via Context Feature Selection and Rank Ensemble" (ECMLPKDD'17)
- Jiaming Shen, Zhihong Shen, Chenyan Xiong, Chi Wang, Kuansan Wang and Jiawei Han. "TaxoExpan: Selfsupervised Taxonomy Expansion with Position-Enhanced Graph Neural Network" (WWW'20)
- Jiaming Shen, Yunyi Zhang, Heng Ji, and Jiawei Han. "Corpus-based Open-Domain Event Type Induction" (EMNLP'21)
- Jinfeng Xiao, Mohab Elkaref, Nathan Herr, Geeth De Mel, and Jiawei Han. "Taxonomy-Guided Fine-Grained Entity Set Expansion" (SDM'23)
- Yiqing Xie, Jiaming Shen, Sha Li, Yuning Mao, and Jiawei Han. "EIDER: Evidence-enhanced Document-level Relation Extraction" (ACL'22)
- Yunyi Zhang, Jiaming Shen, Jingbo Shang, and Jiawei Han. "Empower Entity Set Expansion via Language Model Probing" (ACL'20)

Q&A

